ViewVC logotype

Contents of /trunk/3rdparty/SoundTouch/README.html

Parent Directory Parent Directory | Revision Log Revision Log

Revision 31 - (show annotations) (download) (as text)
Tue Sep 7 03:24:11 2010 UTC (10 years, 11 months ago) by william
File MIME type: text/html
File size: 31002 byte(s)
committing r3113 initial commit again...
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2 <html>
3 <head>
4 <meta http-equiv="Content-Type"
5 content="text/html; charset=windows-1252">
6 <meta http-equiv="Content-Language" content="en-us">
7 <meta name="author" content="Olli Parviainen">
8 <meta name="description"
9 content="Readme file for SoundTouch audio processing library">
10 <meta name="GENERATOR" content="Microsoft FrontPage 4.0">
11 <meta name="ProgId" content="FrontPage.Editor.Document">
12 <title>SoundTouch library README</title>
13 <style>
14 <!--
15 .normal { font-family: Arial }
16 -->
17 </style>
18 </head>
19 <body class="normal">
20 <hr>
21 <h1>SoundTouch audio processing library v1.5.0
22 </h1>
23 <p class="normal">SoundTouch library Copyright (c) Olli
24 Parviainen 2002-2009 </p>
25 <hr>
26 <h2>1. Introduction </h2>
27 <p>SoundTouch is an open-source audio
28 processing library that allows changing the sound tempo, pitch
29 and playback rate parameters independently from each other, i.e.:</p>
30 <ul>
31 <li>Sound tempo can be increased or decreased while
32 maintaining the original pitch</li>
33 <li>Sound pitch can be increased or decreased while
34 maintaining the original tempo </li>
35 <li>Change playback rate that affects both tempo
36 and pitch at the same time </li>
37 <li>Choose any combination of tempo/pitch/rate</li>
38 </ul>
39 <h3>1.1 Contact information </h3>
40 <p>Author email: oparviai 'at' iki.fi </p>
41 <p>SoundTouch WWW page: <a href="http://www.surina.net/soundtouch">http://www.surina.net/soundtouch</a></p>
42 <hr>
43 <h2>2. Compiling SoundTouch</h2>
44 <p>Before compiling, notice that you can choose the sample data format
45 if it's desirable to use floating point sample
46 data instead of 16bit integers. See section "sample data format"
47 for more information.</p>
48 <h3>2.1. Building in Microsoft Windows</h3>
49 <p>Project files for Microsoft Visual C++ 6.0 and Visual C++ .NET are
50 supplied with the source code package.&nbsp;</p>
51 <p> Please notice that SoundTouch
52 library uses processor-specific optimizations for Pentium III and AMD
53 processors. Visual Studio .NET and later versions supports the required
54 instructions by default, but Visual Studio 6.0 requires a processor pack upgrade
55 to be installed in order to support these optimizations. The processor pack upgrade can be downloaded from
56 Microsoft site at this URL:</p>
57 <p><a href="http://msdn.microsoft.com/en-us/vstudio/aa718349.aspx">http://msdn.microsoft.com/en-us/vstudio/aa718349.aspx</a></p>
58 <p>If the above URL is unavailable or removed, go
59 to <a href="http://msdn.microsoft.com/">http://msdn.microsoft.com</a>
60 and perform a search with keywords &quot;processor pack&quot;. </p>
61 <p>To build the binaries with Visual C++
62 compiler, either run &quot;make-win.bat&quot; script, or open the
63 appropriate project files in source code directories with Visual
64 Studio. The final executable will appear under the &quot;SoundTouch\bin&quot;
65 directory. If using the Visual Studio IDE instead of the make-win.bat script, directories bin and
66 lib may need to be created manually to the SoundTouch
67 package root for the final executables. The make-win.bat script
68 creates these directories automatically.
69 </p>
70 <h3>2.2. Building in Gnu platforms</h3>
71 <p>The SoundTouch library can be compiled in
72 practically any platform supporting GNU compiler (GCC) tools.
73 SoundTouch have been tested with gcc version 3.3.4., but it
74 shouldn't be very specific about the gcc version. Assembler-level
75 performance optimizations for GNU platform are currently available in
76 x86 platforms only, they are automatically disabled and replaced with
77 standard C routines in other processor platforms.</p>
78 <p>To build and install the binaries, run the
79 following commands in the SoundTouch/ directory:</p>
80 <table border="0" cellpadding="0" cellspacing="4">
81 <tbody>
82 <tr valign="top">
83 <td>
84 <pre>./configure -</pre>
85 </td>
86 <td>
87 <p>Configures the SoundTouch package for the local
88 environment.</p>
89 </td>
90 </tr>
91 <tr valign="top">
92 <td>
93 <pre>make -</pre>
94 </td>
95 <td>
96 <p>Builds the SoundTouch library &amp;
97 SoundStretch utility.</p>
98 </td>
99 </tr>
100 <tr valign="top">
101 <td>
102 <pre>make install -</pre>
103 </td>
104 <td>
105 <p>Installs the SoundTouch &amp; BPM libraries
106 to <b>/usr/local/lib</b> and SoundStretch utility to <b>/usr/local/bin</b>.
107 Please notice that 'root' privileges may be required to install the
108 binaries to the destination locations.</p>
109 </td>
110 </tr>
111 </tbody>
112 </table>
113 <h4><b>2.2.1 Required GNU tools</b>&nbsp;</h4>
114 <p> Bash shell, GNU C++ compiler, libtool, autoconf and automake tools are required
115 for compiling
116 the SoundTouch library. These are usually included with the GNU/Linux distribution, but if
117 not, install these packages first. For example, in Ubuntu Linux these can be acquired and
118 installed with the following command:</p>
119 <pre><b>sudo apt-get install <font SIZE="2">automake autoconf libtool build-essential</font></b></pre>
120 <h4><b>2.2.2 Problems with GCC compiler compatibility</b></h4>
121 <p>At the release time the SoundTouch package has been tested to compile in
122 GNU/Linux platform. However, in past it's happened that new gcc versions aren't
123 necessarily compatible with the assembler settings used in the optimized
124 routines. <b>If you have problems getting the
125 SoundTouch library compiled, try the workaround of disabling the optimizations</b>
126 by editing the file &quot;include/STTypes.h&quot; and removing the following
127 definition there:</p>
128 <blockquote>
129 <pre>#define ALLOW_OPTIMIZATIONS 1</pre>
130 </blockquote>
131 <h4><b>2.2.3 Problems with configure script or build process</b>&nbsp;</h4>
132 <p>Incompatibilities between various GNU toolchain versions may cause errors when running the &quot;configure&quot; script or building the source
133 codes, if your GNU tool versions are not compatible with the versions used for
134 preparing the SoundTouch kit.&nbsp;</p>
135 <p>To resolve the issue, regenerate the configure scripts with your local tool
136 set by running
137 the &quot;<b>./bootstrap</b>&quot; script included in the SoundTouch source code
138 kit. After that, run the <b>configure</b> script and <b>make</b> as usually.</p>
139 <h4><b>2.2.4 Compiler issues with non-x86 processors</b></h4>
140 <p>SoundTouch library works also on non-x86 processors.</p>
141 <p>However, in case that you get compiler errors when trying to compile for non-Intel processor, edit the file
142 &quot;<b>source\SoundTouch\Makefile.am</b>&quot; and remove the &quot;<b>-msse2</b>&quot;
143 flag on the <b>AM_CXXFLAGS </b>line:</p>
144 <pre><b>AM_CXXFLAGS=-O3 -fcheck-new -I../../include&nbsp;&nbsp;&nbsp; # Note: -msse2 flag removed!</b></pre>
145 <p>After that, run &quot;<b>./bootstrap</b>&quot; script, and then run <b>configure</b>
146 and <b>make</b> again.</p>
147 <hr>
148 <h2>3. About implementation &amp; Usage tips</h2>
149 <h3>3.1. Supported sample data formats</h3>
150 <p>The sample data format can be chosen
151 between 16bit signed integer and 32bit floating point values, the
152 default is 32bit floating point. </p>
154 <p>
155 In Windows environment, the sample data format is chosen
156 in file &quot;STTypes.h&quot; by choosing one of the following
157 defines:</p>
158 <ul>
159 <li><span style="font-weight: bold;">#define INTEGER_SAMPLES</span>
160 for 16bit signed
161 integer</li>
162 <li><span style="font-weight: bold;">#define FLOAT_SAMPLES</span> for
163 32bit floating point</li>
164 </ul>
165 <p>
166 In GNU environment, the floating sample format is used by default, but
167 integer sample format can be chosen by giving the
168 following switch to the configure script:
169 <blockquote>
170 <pre>./configure --enable-integer-samples</pre>
171 </blockquote>
173 <p>The sample data can have either single (mono)
174 or double (stereo) audio channel. Stereo data is interleaved so
175 that every other data value is for left channel and every second
176 for right channel. Notice that while it'd be possible in theory
177 to process stereo sound as two separate mono channels, this isn't
178 recommended because processing the channels separately would
179 result in losing the phase coherency between the channels, which
180 consequently would ruin the stereo effect.</p>
181 <p>Sample rates between 8000-48000H are
182 supported.</p>
183 <h3>3.2. Processing latency</h3>
184 <p>The processing and latency constraints of
185 the SoundTouch library are:</p>
186 <ul>
187 <li>Input/output processing latency for the
188 SoundTouch processor is around 100 ms. This is when time-stretching is
189 used. If the rate transposing effect alone is used, the latency
190 requirement
191 is much shorter, see section 'About algorithms'.</li>
192 <li>Processing CD-quality sound (16bit stereo
193 sound with 44100H sample rate) in real-time or faster is possible
194 starting from processors equivalent to Intel Pentium 133Mh or better,
195 if using the "quick" processing algorithm. If not using the "quick"
196 mode or
197 if floating point sample data are being used, several times more CPU
198 power is typically required.</li>
199 </ul>
200 <h3>3.3. About algorithms</h3>
201 <p>SoundTouch provides three seemingly
202 independent effects: tempo, pitch and playback rate control.
203 These three controls are implemented as combination of two primary
204 effects, <em>sample rate transposing</em> and <em>time-stretching</em>.</p>
205 <p><em>Sample rate transposing</em> affects
206 both the audio stream duration and pitch. It's implemented simply
207 by converting the original audio sample stream to the&nbsp; desired
208 duration by interpolating from the original audio samples. In SoundTouch, linear interpolation with anti-alias filtering is
209 used. Theoretically a higher-order interpolation provide better
210 result than 1st order linear interpolation, but in audio
211 application linear interpolation together with anti-alias
212 filtering performs subjectively about as well as higher-order
213 filtering would.</p>
214 <p><em>Time-stretching </em>means changing
215 the audio stream duration without affecting it's pitch. SoundTouch
216 uses WSOLA-like time-stretching routines that operate in the time
217 domain. Compared to sample rate transposing, time-stretching is a
218 much heavier operation and also requires a longer processing
219 "window" of sound samples used by the
220 processing algorithm, thus increasing the algorithm input/output
221 latency. Typical i/o latency for the SoundTouch
222 time-stretch algorithm is around 100 ms.</p>
223 <p>Sample rate transposing and time-stretching
224 are then used together to produce the tempo, pitch and rate
225 controls:</p>
226 <ul>
227 <li><strong>'Tempo'</strong> control is
228 implemented purely by time-stretching.</li>
229 <li><strong>'Rate</strong>' control is implemented
230 purely by sample rate transposing.</li>
231 <li><strong>'Pitch</strong>' control is
232 implemented as a combination of time-stretching and sample rate
233 transposing. For example, to increase pitch the audio stream is first
234 time-stretched to longer duration (without affecting pitch) and then
235 transposed back to original duration by sample rate transposing, which
236 simultaneously reduces duration and increases pitch. The result is
237 original duration but increased pitch.</li>
238 </ul>
239 <h3>3.4 Tuning the algorithm parameters</h3>
240 <p>The time-stretch algorithm has few
241 parameters that can be tuned to optimize sound quality for
242 certain application. The current default parameters have been
243 chosen by iterative if-then analysis (read: "trial and error")
244 to obtain best subjective sound quality in pop/rock music
245 processing, but in applications processing different kind of
246 sound the default parameter set may result into a sub-optimal
247 result.</p>
248 <p>The time-stretch algorithm default
249 parameter values are set by the following #defines in file &quot;TDStretch.h&quot;:</p>
250 <blockquote>
253 #define DEFAULT_OVERLAP_MS 8</pre>
254 </blockquote>
255 <p>These parameters affect to the time-stretch
256 algorithm as follows:</p>
257 <ul>
258 <li><strong>DEFAULT_SEQUENCE_MS</strong>: This is
259 the default length of a single processing sequence in milliseconds
260 which determines the how the original sound is chopped in
261 the time-stretch algorithm. Larger values mean fewer sequences
262 are used in processing. In principle a larger value sounds better when
263 slowing down the tempo, but worse when increasing the tempo and vice
264 versa.&nbsp;<br>
265 <br>
266 By default, this setting value is calculated automatically according to
267 tempo value.<br>
268 </li>
269 <li><strong>DEFAULT_SEEKWINDOW_MS</strong>: The seeking window
270 default length in milliseconds is for the algorithm that seeks the best
271 possible overlapping location. This determines from how
272 wide a sample "window" the algorithm can use to find an optimal mixing
273 location when the sound sequences are to be linked back together.&nbsp;<br>
274 <br>
275 The bigger this window setting is, the higher the possibility to find a
276 better mixing position becomes, but at the same time large values may
277 cause a "drifting" sound artifact because neighboring sequences can be
278 chosen at more uneven intervals. If there's a disturbing artifact that
279 sounds as if a constant frequency was drifting around, try reducing
280 this setting.<br>
281 <br>
282 By default, this setting value is calculated automatically according to
283 tempo value.<br>
284 </li>
285 <li><strong>DEFAULT_OVERLAP_MS</strong>: Overlap
286 length in milliseconds. When the sound sequences are mixed back
287 together to form again a continuous sound stream, this parameter
288 defines how much the ends of the consecutive sequences will overlap with each other.<br>
289 <br>
290 This shouldn't be that critical parameter. If you reduce the
291 DEFAULT_SEQUENCE_MS setting by a large amount, you might wish to try a
292 smaller value on this.</li>
293 </ul>
294 <p>Notice that these parameters can also be
295 set during execution time with functions "<strong>TDStretch::setParameters()</strong>"
296 and "<strong>SoundTouch::setSetting()</strong>".</p>
297 <p>The table below summaries how the
298 parameters can be adjusted for different applications:</p>
299 <table border="1">
300 <tbody>
301 <tr>
302 <td valign="top"><strong>Parameter name</strong></td>
303 <td valign="top"><strong>Default value
304 magnitude</strong></td>
305 <td valign="top"><strong>Larger value
306 affects...</strong></td>
307 <td valign="top"><strong>Smaller value
308 affects...</strong></td>
309 <td valign="top"><strong>Effect to CPU burden</strong></td>
310 </tr>
311 <tr>
312 <td valign="top">
313 <pre>SEQUENCE_MS</pre>
314 </td>
315 <td valign="top">Default value is relatively
316 large, chosen for slowing down music tempo</td>
317 <td valign="top">Larger value is usually
318 better for slowing down tempo. Growing the value decelerates the
319 "echoing" artifact when slowing down the tempo.</td>
320 <td valign="top">Smaller value might be better
321 for speeding up tempo. Reducing the value accelerates the "echoing"
322 artifact when slowing down the tempo </td>
323 <td valign="top">Increasing the parameter
324 value reduces computation burden</td>
325 </tr>
326 <tr>
327 <td valign="top">
328 <pre>SEEKWINDOW_MS</pre>
329 </td>
330 <td valign="top">Default value is relatively
331 large, chosen for slowing down music tempo</td>
332 <td valign="top">Larger value eases finding a
333 good mixing position, but may cause a "drifting" artifact</td>
334 <td valign="top">Smaller reduce possibility to
335 find a good mixing position, but reduce the "drifting" artifact.</td>
336 <td valign="top">Increasing the parameter
337 value increases computation burden</td>
338 </tr>
339 <tr>
340 <td valign="top">
341 <pre>OVERLAP_MS</pre>
342 </td>
343 <td valign="top">Default value is relatively
344 large, chosen to suit with above parameters.</td>
345 <td valign="top">&nbsp;</td>
346 <td valign="top">If you reduce the "sequence
347 ms" setting, you might wish to try a smaller value.</td>
348 <td valign="top">Increasing the parameter
349 value increases computation burden</td>
350 </tr>
351 </tbody>
352 </table>
353 <h3>3.5 Performance Optimizations </h3>
354 <p><strong>General optimizations:</strong></p>
355 <p>The time-stretch routine has a 'quick' mode
356 that substantially speeds up the algorithm but may degrade the
357 sound quality by a small amount. This mode is activated by
358 calling SoundTouch::setSetting() function with parameter&nbsp; id
359 of SETTING_USE_QUICKSEEK and value "1", i.e. </p>
360 <blockquote>
361 <p>setSetting(SETTING_USE_QUICKSEEK, 1);</p>
362 </blockquote>
363 <p><strong>CPU-specific optimizations:</strong></p>
364 <ul>
365 <li>Intel MMX optimized routines are used with
366 compatible CPUs when 16bit integer sample type is used. MMX optimizations are available both in Win32 and Gnu/x86 platforms.
367 Compatible processors are Intel PentiumMMX and later; AMD K6-2, Athlon
368 and later. </li>
369 <li>Intel SSE optimized routines are used with
370 compatible CPUs when floating point sample type is used. SSE optimizations are currently implemented for Win32 platform only.
371 Processors compatible with SSE extension are Intel processors starting
372 from Pentium-III, and AMD processors starting from Athlon XP. </li>
373 <li>AMD 3DNow! optimized routines are used with
374 compatible CPUs when floating point sample type is used, but SSE
375 extension isn't supported . 3DNow! optimizations are currently
376 implemented for Win32 platform only. These optimizations are used in
377 AMD K6-2 and Athlon (classic) CPU's; better performing SSE routines are
378 used with AMD processor starting from Athlon XP. </li>
379 </ul>
380 <hr>
381 <h2><a name="SoundStretch"></a>4. SoundStretch audio processing utility
382 </h2>
383 <p>SoundStretch audio processing utility<br>
384 Copyright (c) Olli Parviainen 2002-2009</p>
385 <p>SoundStretch is a simple command-line
386 application that can change tempo, pitch and playback rates of
387 WAV sound files. This program is intended primarily to
388 demonstrate how the &quot;SoundTouch&quot; library can be used to
389 process sound in your own program, but it can as well be used for
390 processing sound files.</p>
391 <h3>4.1. SoundStretch Usage Instructions</h3>
392 <p>SoundStretch Usage syntax:</p>
393 <blockquote>
394 <pre>soundstretch infilename outfilename [switches]</pre>
395 </blockquote>
396 <p>Where: </p>
397 <table border="0" cellpadding="2" width="100%">
398 <tbody>
399 <tr>
400 <td valign="top">
401 <pre>&quot;infilename&quot;</pre>
402 </td>
403 <td valign="top">Name of the input sound
404 data file (in .WAV audio file format). Give &quot;stdin&quot; as filename to use
405 standard input pipe. </td>
406 </tr>
407 <tr>
408 <td valign="top">
409 <pre>&quot;outfilename&quot;</pre>
410 </td>
411 <td valign="top">Name of the output sound
412 file where the resulting sound is saved (in .WAV audio file format).
413 This parameter may be omitted if you&nbsp; don't want to save the
414 output
415 (e.g. when only calculating BPM rate with '-bpm' switch). Give &quot;stdout&quot;
416 as filename to use standard output pipe.</td>
417 </tr>
418 <tr>
419 <td valign="top">
420 <pre>&nbsp;[switches]</pre>
421 </td>
422 <td valign="top">Are one or more control
423 switches.</td>
424 </tr>
425 </tbody>
426 </table>
427 <p>Available control switches are:</p>
428 <table border="0" cellpadding="2" width="100%">
429 <tbody>
430 <tr>
431 <td valign="top">
432 <pre>-tempo=n </pre>
433 </td>
434 <td valign="top">Change the sound tempo by n
435 percents (n = -95.0 .. +5000.0 %) </td>
436 </tr>
437 <tr>
438 <td valign="top">
439 <pre>-pitch=n</pre>
440 </td>
441 <td valign="top">Change the sound pitch by n
442 semitones (n = -60.0 .. + 60.0 semitones) </td>
443 </tr>
444 <tr>
445 <td valign="top">
446 <pre>-rate=n</pre>
447 </td>
448 <td valign="top">Change the sound playback rate by
449 n percents (n = -95.0 .. +5000.0 %) </td>
450 </tr>
451 <tr>
452 <td valign="top">
453 <pre>-bpm=n</pre>
454 </td>
455 <td valign="top">Detect the Beats-Per-Minute (BPM) rate of the sound and adjust the tempo to meet 'n'
456 BPMs. When this switch is
457 applied, the &quot;-tempo&quot; switch is ignored. If "=n" is
458 omitted, i.e. switch &quot;-bpm&quot; is used alone, then the BPM rate is
459 estimated and displayed, but tempo not adjusted according to the BPM
460 value. </td>
461 </tr>
462 <tr>
463 <td valign="top">
464 <pre>-quick</pre>
465 </td>
466 <td valign="top">Use quicker tempo change
467 algorithm. Gains speed but loses sound quality. </td>
468 </tr>
469 <tr>
470 <td valign="top">
471 <pre>-naa</pre>
472 </td>
473 <td valign="top">Don't use anti-alias
474 filtering in sample rate transposing. Gains speed but loses sound
475 quality. </td>
476 </tr>
477 <tr>
478 <td valign="top">
479 <pre>-license</pre>
480 </td>
481 <td valign="top">Displays the program license
482 text (LGPL)</td>
483 </tr>
484 </tbody>
485 </table>
486 <p>Notes:</p>
487 <ul>
488 <li>To use standard input/output pipes for processing, give &quot;stdin&quot;
489 and &quot;stdout&quot; as input/output filenames correspondingly. The
490 standard input/output pipes will still carry the audio data in .wav audio
491 file format.</li>
492 <li>The numerical switches allow both integer (e.g. "-tempo=123") and decimal (e.g.
493 "-tempo=123.45") numbers.</li>
494 <li>The &quot;-naa&quot; and/or "-quick" switches can be
495 used to reduce CPU usage while compromising some sound quality </li>
496 <li>The BPM detection algorithm works by detecting
497 repeating bass or drum patterns at low frequencies of &lt;250Hz. A
498 lower-than-expected BPM figure may be reported for music with uneven or
499 complex bass patterns. </li>
500 </ul>
501 <h3>4.2. SoundStretch usage examples </h3>
502 <p><strong>Example 1</strong></p>
503 <p>The following command increases tempo of
504 the sound file &quot;originalfile.wav&quot; by 12.5% and stores result to file &quot;destinationfile.wav&quot;:</p>
505 <blockquote>
506 <pre>soundstretch originalfile.wav destinationfile.wav -tempo=12.5</pre>
507 </blockquote>
508 <p><strong>Example 2</strong></p>
509 <p>The following command decreases the sound
510 pitch (key) of the sound file &quot;orig.wav&quot; by two
511 semitones and stores the result to file &quot;dest.wav&quot;:</p>
512 <blockquote>
513 <pre>soundstretch orig.wav dest.wav -pitch=-2</pre>
514 </blockquote>
515 <p><strong>Example 3</strong></p>
516 <p>The following command processes the file &quot;orig.wav&quot; by decreasing the sound tempo by 25.3% and
517 increasing the sound pitch (key) by 1.5 semitones. Resulting .wav audio data is
518 directed to standard output pipe:</p>
519 <blockquote>
520 <pre>soundstretch orig.wav stdout -tempo=-25.3 -pitch=1.5</pre>
521 </blockquote>
522 <p><strong>Example 4</strong></p>
523 <p>The following command detects the BPM rate
524 of the file &quot;orig.wav&quot; and adjusts the tempo to match
525 100 beats per minute. Result is stored to file &quot;dest.wav&quot;:</p>
526 <blockquote>
527 <pre>soundstretch orig.wav dest.wav -bpm=100</pre>
528 </blockquote>
529 <p><strong>Example 5</strong></p>
530 <p>The following command reads .wav sound data from standard input pipe and
531 estimates the BPM rate:</p>
532 <blockquote>
533 <pre>soundstretch stdin -bpm</pre>
534 </blockquote>
535 <hr>
536 <h2>5. Change History</h2>
537 <h3>5.1. SoundTouch library Change History </h3>
539 <p><strong>1.5.0:</strong></p>
540 <ul>
541 <li>Added normalization to correlation calculation and improvement automatic seek/sequence parameter calculation to improve sound quality</li>
543 <li>Bugfixes:&nbsp;
544 <ul>
545 <li>Fixed negative array indexing in quick seek algorithm</li>
546 <li>FIR autoalias filter running too far in processing buffer</li>
547 <li>Check against zero sample count in rate transposing</li>
548 <li>Fix for x86-64 support: Removed pop/push instructions from the cpu detection algorithm.&nbsp;</li>
549 <li>Check against empty buffers in FIFOSampleBuffer</li>
550 <li>Other minor fixes &amp; code cleanup</li>
551 </ul>
552 </li>
554 <li>Fixes in compilation scripts for non-Intel platforms</li>
555 <li>Added Dynamic-Link-Library (DLL) version of SoundTouch library build,
556 provided with Delphi/Pascal wrapper for calling the dll routines</li>
557 <li>Added #define PREVENT_CLICK_AT_RATE_CROSSOVER that prevents a click artifact
558 when crossing the nominal pitch from either positive to negative side or vice
559 versa</li>
561 </ul>
563 <p><strong>1.4.1:</strong></p>
564 <ul>
565 <li>Fixed a buffer overflow bug in BPM detect algorithm routines if processing
566 more than 2048 samples at one call&nbsp;</li>
568 </ul>
570 <p><strong>1.4.0:</strong></p>
571 <ul>
572 <li>Improved sound quality by automatic calculation of time stretch algorithm
573 processing parameters according to tempo setting</li>
574 <li>Moved BPM detection routines from SoundStretch application into SoundTouch
575 library</li>
576 <li>Bugfixes: Usage of uninitialied variables, GNU build scripts, compiler errors
577 due to 'const' keyword mismatch.</li>
578 <li>Source code cleanup</li>
580 </ul>
582 <p><strong>v1.3.1:
583 </strong></p>
584 <ul>
585 <li>Changed static class declaration to GCC 4.x compiler compatible syntax.</li>
586 <li>Enabled MMX/SSE-optimized routines also for GCC compilers. Earlier
587 the MMX/SSE-optimized routines were written in compiler-specific inline
588 assembler, now these routines are migrated to use compiler intrinsic
589 syntax which allows compiling the same MMX/SSE-optimized source code with
590 both Visual C++ and GCC compilers. </li>
591 <li>Set floating point as the default sample format and added switch to
592 the GNU configure script for selecting the other sample format.</li>
594 </ul>
596 <p><strong>v1.3.0:
597 </strong></p>
598 <ul>
599 <li>Fixed tempo routine output duration inaccuracy due to rounding
600 error </li>
601 <li>Implemented separate processing routines for integer and
602 floating arithmetic to allow improvements to floating point routines
603 (earlier used algorithms mostly optimized for integer arithmetic also
604 for floating point samples) </li>
605 <li>Fixed a bug that distorts sound if sample rate changes during the
606 sound stream </li>
607 <li>Fixed a memory leak that appeared in MMX/SSE/3DNow! optimized
608 routines </li>
609 <li>Reduced redundant code pieces in MMX/SSE/3DNow! optimized
610 routines vs. the standard C routines.</li>
611 <li>MMX routine incompatibility with new gcc compiler versions </li>
612 <li>Other miscellaneous bug fixes </li>
613 </ul>
614 <p><strong>v1.2.1: </strong></p>
615 <ul>
616 <li>Added automake/autoconf scripts for GNU
617 platforms (in courtesy of David Durham)</li>
618 <li>Fixed SCALE overflow bug in rate transposer
619 routine.</li>
620 <li>Fixed 64bit address space bugs.</li>
621 <li>Created a 'soundtouch' namespace for
622 SAMPLETYPE definitions.</li>
623 </ul>
624 <p><strong>v1.2.0: </strong></p>
625 <ul>
626 <li>Added support for 32bit floating point sample
627 data type with SSE/3DNow! optimizations for Win32 platform (SSE/3DNow! optimizations currently not supported in GCC environment)</li>
628 <li>Replaced 'make-gcc' script for GNU environment
629 by master Makefile</li>
630 <li>Added time-stretch routine configurability to
631 SoundTouch main class</li>
632 <li>Bugfixes</li>
633 </ul>
634 <p><strong>v1.1.1: </strong></p>
635 <ul>
636 <li>Moved SoundTouch under lesser GPL license (LGPL). This allows using SoundTouch library in programs that aren't
637 released under GPL license. </li>
638 <li>Changed MMX routine organiation so that MMX optimized routines are now implemented in classes that are derived from
639 the basic classes having the standard non-mmx routines. </li>
640 <li>MMX routines to support gcc version 3. </li>
641 <li>Replaced windows makefiles by script using the .dsw files </li>
642 </ul>
643 <p><strong>v1.01: </strong></p>
644 <ul>
645 <li>&quot;mmx_gcc.cpp&quot;: Added "using namespace std" and
646 removed "return 0" from a function with void return value to fix
647 compiler errors when compiling the library in Solaris environment. </li>
648 <li>Moved file &quot;FIFOSampleBuffer.h&quot; to "include"
649 directory to allow accessing the FIFOSampleBuffer class from external
650 files. </li>
651 </ul>
652 <p><strong>v1.0: </strong></p>
653 <ul>
654 <li>Initial release </li>
655 </ul>
656 <p>&nbsp;</p>
657 <h3>5.2. SoundStretch application Change
658 History </h3>
660 <p><strong>1.4.0:</strong></p>
661 <ul>
662 <li>Moved BPM detection routines from SoundStretch application into SoundTouch
663 library</li>
664 <li>Allow using standard input/output pipes as audio processing input/output
665 streams</li>
667 </ul>
669 <p><strong>v1.3.0:</strong></p>
670 <ul>
671 <li>Simplified accessing WAV files with floating
672 point sample format.
673 </li>
674 </ul>
675 <p><strong>v1.2.1: </strong></p>
676 <ul>
677 <li>Fixed 64bit address space bugs.</li>
678 </ul>
679 <p><strong>v1.2.0: </strong></p>
680 <ul>
681 <li>Added support for 32bit floating point sample
682 data type</li>
683 <li>Restructured the BPM routines into separate
684 library</li>
685 <li>Fixed big-endian conversion bugs in WAV file
686 routines (hopefully :)</li>
687 </ul>
688 <p><strong>v1.1.1: </strong></p>
689 <ul>
690 <li>Fixed bugs in WAV file reading &amp; added
691 byte-order conversion for big-endian processors. </li>
692 <li>Moved SoundStretch source code under 'example'
693 directory to highlight difference from SoundTouch stuff. </li>
694 <li>Replaced windows makefiles by script using the .dsw files </li>
695 <li>Output file name isn't required if output
696 isn't desired (e.g. if using the switch '-bpm' in plain format only) </li>
697 </ul>
698 <p><strong>v1.1:</strong></p>
699 <ul>
700 <li>Fixed "Release" settings in Microsoft Visual
701 C++ project file (.dsp) </li>
702 <li>Added beats-per-minute (BPM) detection routine
703 and command-line switch &quot;-bpm&quot; </li>
704 </ul>
705 <p><strong>v1.01: </strong></p>
706 <ul>
707 <li>Initial release </li>
708 </ul>
709 <hr>
710 <h2 >6. Acknowledgements </h2>
711 <p >Kudos for these people who have contributed to development or submitted
712 bugfixes since
713 SoundTouch v1.3.1: </p>
714 <ul>
715 <li>Arthur A</li>
716 <li>Richard Ash</li>
717 <li>Stanislav Brabec</li>
718 <li>Christian Budde</li>
719 <li>Brian Cameron</li>
720 <li>Jason Champion</li>
721 <li>Patrick Colis</li>
722 <li>Justin Frankel</li>
723 <li>Jason Garland</li>
724 <li>Takashi Iwai</li>
725 <li>Paulo Pizarro</li>
726 <li>RJ Ryan</li>
727 <li>John Sheehy</li>
728 </ul>
729 <p >Moral greetings to all other contributors and users also!</p>
730 <hr>
731 <h2 >7. LICENSE </h2>
732 <p>SoundTouch audio processing library<br>
733 Copyright (c) Olli Parviainen</p>
734 <p>This library is free software; you can
735 redistribute it and/or modify it under the terms of the GNU
736 Lesser General Public License version 2.1 as published by the Free Software
737 Foundation.</p>
738 <p>This library is distributed in the hope
739 that it will be useful, but WITHOUT ANY WARRANTY; without even
740 the implied warranty of MERCHANTABILITY or FITNESS FOR A
741 PARTICULAR PURPOSE. See the GNU Lesser General Public License for
742 more details.</p>
743 <p>You should have received a copy of the GNU
744 Lesser General Public License along with this library; if not,
745 write to the Free Software Foundation, Inc., 59 Temple Place,
746 Suite 330, Boston, MA 02111-1307 USA</p>
747 <hr>
748 <!--
749 $Id: README.html 81 2009-12-28 20:51:18Z oparviai $
750 -->
751 </body>
752 </html>

  ViewVC Help
Powered by ViewVC 1.1.22