1 |
/* adler32.c -- compute the Adler-32 checksum of a data stream |
2 |
* Copyright (C) 1995-2007 Mark Adler |
3 |
* For conditions of distribution and use, see copyright notice in zlib.h |
4 |
*/ |
5 |
|
6 |
/* @(#) $Id$ */ |
7 |
|
8 |
#include "zutil.h" |
9 |
|
10 |
#define local static |
11 |
|
12 |
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2); |
13 |
|
14 |
#define BASE 65521UL /* largest prime smaller than 65536 */ |
15 |
#define NMAX 5552 |
16 |
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
17 |
|
18 |
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
19 |
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
20 |
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
21 |
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
22 |
#define DO16(buf) DO8(buf,0); DO8(buf,8); |
23 |
|
24 |
/* use NO_DIVIDE if your processor does not do division in hardware */ |
25 |
#ifdef NO_DIVIDE |
26 |
# define MOD(a) \ |
27 |
do { \ |
28 |
if (a >= (BASE << 16)) a -= (BASE << 16); \ |
29 |
if (a >= (BASE << 15)) a -= (BASE << 15); \ |
30 |
if (a >= (BASE << 14)) a -= (BASE << 14); \ |
31 |
if (a >= (BASE << 13)) a -= (BASE << 13); \ |
32 |
if (a >= (BASE << 12)) a -= (BASE << 12); \ |
33 |
if (a >= (BASE << 11)) a -= (BASE << 11); \ |
34 |
if (a >= (BASE << 10)) a -= (BASE << 10); \ |
35 |
if (a >= (BASE << 9)) a -= (BASE << 9); \ |
36 |
if (a >= (BASE << 8)) a -= (BASE << 8); \ |
37 |
if (a >= (BASE << 7)) a -= (BASE << 7); \ |
38 |
if (a >= (BASE << 6)) a -= (BASE << 6); \ |
39 |
if (a >= (BASE << 5)) a -= (BASE << 5); \ |
40 |
if (a >= (BASE << 4)) a -= (BASE << 4); \ |
41 |
if (a >= (BASE << 3)) a -= (BASE << 3); \ |
42 |
if (a >= (BASE << 2)) a -= (BASE << 2); \ |
43 |
if (a >= (BASE << 1)) a -= (BASE << 1); \ |
44 |
if (a >= BASE) a -= BASE; \ |
45 |
} while (0) |
46 |
# define MOD4(a) \ |
47 |
do { \ |
48 |
if (a >= (BASE << 4)) a -= (BASE << 4); \ |
49 |
if (a >= (BASE << 3)) a -= (BASE << 3); \ |
50 |
if (a >= (BASE << 2)) a -= (BASE << 2); \ |
51 |
if (a >= (BASE << 1)) a -= (BASE << 1); \ |
52 |
if (a >= BASE) a -= BASE; \ |
53 |
} while (0) |
54 |
#else |
55 |
# define MOD(a) a %= BASE |
56 |
# define MOD4(a) a %= BASE |
57 |
#endif |
58 |
|
59 |
/* ========================================================================= */ |
60 |
uLong ZEXPORT adler32(adler, buf, len) |
61 |
uLong adler; |
62 |
const Bytef *buf; |
63 |
uInt len; |
64 |
{ |
65 |
unsigned long sum2; |
66 |
unsigned n; |
67 |
|
68 |
/* split Adler-32 into component sums */ |
69 |
sum2 = (adler >> 16) & 0xffff; |
70 |
adler &= 0xffff; |
71 |
|
72 |
/* in case user likes doing a byte at a time, keep it fast */ |
73 |
if (len == 1) { |
74 |
adler += buf[0]; |
75 |
if (adler >= BASE) |
76 |
adler -= BASE; |
77 |
sum2 += adler; |
78 |
if (sum2 >= BASE) |
79 |
sum2 -= BASE; |
80 |
return adler | (sum2 << 16); |
81 |
} |
82 |
|
83 |
/* initial Adler-32 value (deferred check for len == 1 speed) */ |
84 |
if (buf == Z_NULL) |
85 |
return 1L; |
86 |
|
87 |
/* in case short lengths are provided, keep it somewhat fast */ |
88 |
if (len < 16) { |
89 |
while (len--) { |
90 |
adler += *buf++; |
91 |
sum2 += adler; |
92 |
} |
93 |
if (adler >= BASE) |
94 |
adler -= BASE; |
95 |
MOD4(sum2); /* only added so many BASE's */ |
96 |
return adler | (sum2 << 16); |
97 |
} |
98 |
|
99 |
/* do length NMAX blocks -- requires just one modulo operation */ |
100 |
while (len >= NMAX) { |
101 |
len -= NMAX; |
102 |
n = NMAX / 16; /* NMAX is divisible by 16 */ |
103 |
do { |
104 |
DO16(buf); /* 16 sums unrolled */ |
105 |
buf += 16; |
106 |
} while (--n); |
107 |
MOD(adler); |
108 |
MOD(sum2); |
109 |
} |
110 |
|
111 |
/* do remaining bytes (less than NMAX, still just one modulo) */ |
112 |
if (len) { /* avoid modulos if none remaining */ |
113 |
while (len >= 16) { |
114 |
len -= 16; |
115 |
DO16(buf); |
116 |
buf += 16; |
117 |
} |
118 |
while (len--) { |
119 |
adler += *buf++; |
120 |
sum2 += adler; |
121 |
} |
122 |
MOD(adler); |
123 |
MOD(sum2); |
124 |
} |
125 |
|
126 |
/* return recombined sums */ |
127 |
return adler | (sum2 << 16); |
128 |
} |
129 |
|
130 |
/* ========================================================================= */ |
131 |
local uLong adler32_combine_(adler1, adler2, len2) |
132 |
uLong adler1; |
133 |
uLong adler2; |
134 |
z_off64_t len2; |
135 |
{ |
136 |
unsigned long sum1; |
137 |
unsigned long sum2; |
138 |
unsigned rem; |
139 |
|
140 |
/* the derivation of this formula is left as an exercise for the reader */ |
141 |
rem = (unsigned)(len2 % BASE); |
142 |
sum1 = adler1 & 0xffff; |
143 |
sum2 = rem * sum1; |
144 |
MOD(sum2); |
145 |
sum1 += (adler2 & 0xffff) + BASE - 1; |
146 |
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
147 |
if (sum1 >= BASE) sum1 -= BASE; |
148 |
if (sum1 >= BASE) sum1 -= BASE; |
149 |
if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); |
150 |
if (sum2 >= BASE) sum2 -= BASE; |
151 |
return sum1 | (sum2 << 16); |
152 |
} |
153 |
|
154 |
/* ========================================================================= */ |
155 |
uLong ZEXPORT adler32_combine(adler1, adler2, len2) |
156 |
uLong adler1; |
157 |
uLong adler2; |
158 |
z_off_t len2; |
159 |
{ |
160 |
return adler32_combine_(adler1, adler2, len2); |
161 |
} |
162 |
|
163 |
uLong ZEXPORT adler32_combine64(adler1, adler2, len2) |
164 |
uLong adler1; |
165 |
uLong adler2; |
166 |
z_off64_t len2; |
167 |
{ |
168 |
return adler32_combine_(adler1, adler2, len2); |
169 |
} |