1 |
/* |
2 |
* jquant2.c |
3 |
* |
4 |
* Copyright (C) 1991-1996, Thomas G. Lane. |
5 |
* This file is part of the Independent JPEG Group's software. |
6 |
* For conditions of distribution and use, see the accompanying README file. |
7 |
* |
8 |
* This file contains 2-pass color quantization (color mapping) routines. |
9 |
* These routines provide selection of a custom color map for an image, |
10 |
* followed by mapping of the image to that color map, with optional |
11 |
* Floyd-Steinberg dithering. |
12 |
* It is also possible to use just the second pass to map to an arbitrary |
13 |
* externally-given color map. |
14 |
* |
15 |
* Note: ordered dithering is not supported, since there isn't any fast |
16 |
* way to compute intercolor distances; it's unclear that ordered dither's |
17 |
* fundamental assumptions even hold with an irregularly spaced color map. |
18 |
*/ |
19 |
|
20 |
#define JPEG_INTERNALS |
21 |
#include "jinclude.h" |
22 |
#include "jpeglib.h" |
23 |
|
24 |
#ifdef QUANT_2PASS_SUPPORTED |
25 |
|
26 |
|
27 |
/* |
28 |
* This module implements the well-known Heckbert paradigm for color |
29 |
* quantization. Most of the ideas used here can be traced back to |
30 |
* Heckbert's seminal paper |
31 |
* Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", |
32 |
* Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. |
33 |
* |
34 |
* In the first pass over the image, we accumulate a histogram showing the |
35 |
* usage count of each possible color. To keep the histogram to a reasonable |
36 |
* size, we reduce the precision of the input; typical practice is to retain |
37 |
* 5 or 6 bits per color, so that 8 or 4 different input values are counted |
38 |
* in the same histogram cell. |
39 |
* |
40 |
* Next, the color-selection step begins with a box representing the whole |
41 |
* color space, and repeatedly splits the "largest" remaining box until we |
42 |
* have as many boxes as desired colors. Then the mean color in each |
43 |
* remaining box becomes one of the possible output colors. |
44 |
* |
45 |
* The second pass over the image maps each input pixel to the closest output |
46 |
* color (optionally after applying a Floyd-Steinberg dithering correction). |
47 |
* This mapping is logically trivial, but making it go fast enough requires |
48 |
* considerable care. |
49 |
* |
50 |
* Heckbert-style quantizers vary a good deal in their policies for choosing |
51 |
* the "largest" box and deciding where to cut it. The particular policies |
52 |
* used here have proved out well in experimental comparisons, but better ones |
53 |
* may yet be found. |
54 |
* |
55 |
* In earlier versions of the IJG code, this module quantized in YCbCr color |
56 |
* space, processing the raw upsampled data without a color conversion step. |
57 |
* This allowed the color conversion math to be done only once per colormap |
58 |
* entry, not once per pixel. However, that optimization precluded other |
59 |
* useful optimizations (such as merging color conversion with upsampling) |
60 |
* and it also interfered with desired capabilities such as quantizing to an |
61 |
* externally-supplied colormap. We have therefore abandoned that approach. |
62 |
* The present code works in the post-conversion color space, typically RGB. |
63 |
* |
64 |
* To improve the visual quality of the results, we actually work in scaled |
65 |
* RGB space, giving G distances more weight than R, and R in turn more than |
66 |
* B. To do everything in integer math, we must use integer scale factors. |
67 |
* The 2/3/1 scale factors used here correspond loosely to the relative |
68 |
* weights of the colors in the NTSC grayscale equation. |
69 |
* If you want to use this code to quantize a non-RGB color space, you'll |
70 |
* probably need to change these scale factors. |
71 |
*/ |
72 |
|
73 |
#define R_SCALE 2 /* scale R distances by this much */ |
74 |
#define G_SCALE 3 /* scale G distances by this much */ |
75 |
#define B_SCALE 1 /* and B by this much */ |
76 |
|
77 |
/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined |
78 |
* in jmorecfg.h. As the code stands, it will do the right thing for R,G,B |
79 |
* and B,G,R orders. If you define some other weird order in jmorecfg.h, |
80 |
* you'll get compile errors until you extend this logic. In that case |
81 |
* you'll probably want to tweak the histogram sizes too. |
82 |
*/ |
83 |
|
84 |
#if RGB_RED == 0 |
85 |
#define C0_SCALE R_SCALE |
86 |
#endif |
87 |
#if RGB_BLUE == 0 |
88 |
#define C0_SCALE B_SCALE |
89 |
#endif |
90 |
#if RGB_GREEN == 1 |
91 |
#define C1_SCALE G_SCALE |
92 |
#endif |
93 |
#if RGB_RED == 2 |
94 |
#define C2_SCALE R_SCALE |
95 |
#endif |
96 |
#if RGB_BLUE == 2 |
97 |
#define C2_SCALE B_SCALE |
98 |
#endif |
99 |
|
100 |
|
101 |
/* |
102 |
* First we have the histogram data structure and routines for creating it. |
103 |
* |
104 |
* The number of bits of precision can be adjusted by changing these symbols. |
105 |
* We recommend keeping 6 bits for G and 5 each for R and B. |
106 |
* If you have plenty of memory and cycles, 6 bits all around gives marginally |
107 |
* better results; if you are short of memory, 5 bits all around will save |
108 |
* some space but degrade the results. |
109 |
* To maintain a fully accurate histogram, we'd need to allocate a "long" |
110 |
* (preferably unsigned long) for each cell. In practice this is overkill; |
111 |
* we can get by with 16 bits per cell. Few of the cell counts will overflow, |
112 |
* and clamping those that do overflow to the maximum value will give close- |
113 |
* enough results. This reduces the recommended histogram size from 256Kb |
114 |
* to 128Kb, which is a useful savings on PC-class machines. |
115 |
* (In the second pass the histogram space is re-used for pixel mapping data; |
116 |
* in that capacity, each cell must be able to store zero to the number of |
117 |
* desired colors. 16 bits/cell is plenty for that too.) |
118 |
* Since the JPEG code is intended to run in small memory model on 80x86 |
119 |
* machines, we can't just allocate the histogram in one chunk. Instead |
120 |
* of a true 3-D array, we use a row of pointers to 2-D arrays. Each |
121 |
* pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and |
122 |
* each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that |
123 |
* on 80x86 machines, the pointer row is in near memory but the actual |
124 |
* arrays are in far memory (same arrangement as we use for image arrays). |
125 |
*/ |
126 |
|
127 |
#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ |
128 |
|
129 |
/* These will do the right thing for either R,G,B or B,G,R color order, |
130 |
* but you may not like the results for other color orders. |
131 |
*/ |
132 |
#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ |
133 |
#define HIST_C1_BITS 6 /* bits of precision in G histogram */ |
134 |
#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ |
135 |
|
136 |
/* Number of elements along histogram axes. */ |
137 |
#define HIST_C0_ELEMS (1<<HIST_C0_BITS) |
138 |
#define HIST_C1_ELEMS (1<<HIST_C1_BITS) |
139 |
#define HIST_C2_ELEMS (1<<HIST_C2_BITS) |
140 |
|
141 |
/* These are the amounts to shift an input value to get a histogram index. */ |
142 |
#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) |
143 |
#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) |
144 |
#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) |
145 |
|
146 |
|
147 |
typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ |
148 |
|
149 |
typedef histcell FAR * histptr; /* for pointers to histogram cells */ |
150 |
|
151 |
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ |
152 |
typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ |
153 |
typedef hist2d * hist3d; /* type for top-level pointer */ |
154 |
|
155 |
|
156 |
/* Declarations for Floyd-Steinberg dithering. |
157 |
* |
158 |
* Errors are accumulated into the array fserrors[], at a resolution of |
159 |
* 1/16th of a pixel count. The error at a given pixel is propagated |
160 |
* to its not-yet-processed neighbors using the standard F-S fractions, |
161 |
* ... (here) 7/16 |
162 |
* 3/16 5/16 1/16 |
163 |
* We work left-to-right on even rows, right-to-left on odd rows. |
164 |
* |
165 |
* We can get away with a single array (holding one row's worth of errors) |
166 |
* by using it to store the current row's errors at pixel columns not yet |
167 |
* processed, but the next row's errors at columns already processed. We |
168 |
* need only a few extra variables to hold the errors immediately around the |
169 |
* current column. (If we are lucky, those variables are in registers, but |
170 |
* even if not, they're probably cheaper to access than array elements are.) |
171 |
* |
172 |
* The fserrors[] array has (#columns + 2) entries; the extra entry at |
173 |
* each end saves us from special-casing the first and last pixels. |
174 |
* Each entry is three values long, one value for each color component. |
175 |
* |
176 |
* Note: on a wide image, we might not have enough room in a PC's near data |
177 |
* segment to hold the error array; so it is allocated with alloc_large. |
178 |
*/ |
179 |
|
180 |
#if BITS_IN_JSAMPLE == 8 |
181 |
typedef INT16 FSERROR; /* 16 bits should be enough */ |
182 |
typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
183 |
#else |
184 |
typedef INT32 FSERROR; /* may need more than 16 bits */ |
185 |
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
186 |
#endif |
187 |
|
188 |
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
189 |
|
190 |
|
191 |
/* Private subobject */ |
192 |
|
193 |
typedef struct { |
194 |
struct jpeg_color_quantizer pub; /* public fields */ |
195 |
|
196 |
/* Space for the eventually created colormap is stashed here */ |
197 |
JSAMPARRAY sv_colormap; /* colormap allocated at init time */ |
198 |
int desired; /* desired # of colors = size of colormap */ |
199 |
|
200 |
/* Variables for accumulating image statistics */ |
201 |
hist3d histogram; /* pointer to the histogram */ |
202 |
|
203 |
boolean needs_zeroed; /* TRUE if next pass must zero histogram */ |
204 |
|
205 |
/* Variables for Floyd-Steinberg dithering */ |
206 |
FSERRPTR fserrors; /* accumulated errors */ |
207 |
boolean on_odd_row; /* flag to remember which row we are on */ |
208 |
int * error_limiter; /* table for clamping the applied error */ |
209 |
} my_cquantizer; |
210 |
|
211 |
typedef my_cquantizer * my_cquantize_ptr; |
212 |
|
213 |
|
214 |
/* |
215 |
* Prescan some rows of pixels. |
216 |
* In this module the prescan simply updates the histogram, which has been |
217 |
* initialized to zeroes by start_pass. |
218 |
* An output_buf parameter is required by the method signature, but no data |
219 |
* is actually output (in fact the buffer controller is probably passing a |
220 |
* NULL pointer). |
221 |
*/ |
222 |
|
223 |
METHODDEF(void) |
224 |
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
225 |
JSAMPARRAY output_buf, int num_rows) |
226 |
{ |
227 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
228 |
register JSAMPROW ptr; |
229 |
register histptr histp; |
230 |
register hist3d histogram = cquantize->histogram; |
231 |
int row; |
232 |
JDIMENSION col; |
233 |
JDIMENSION width = cinfo->output_width; |
234 |
|
235 |
for (row = 0; row < num_rows; row++) { |
236 |
ptr = input_buf[row]; |
237 |
for (col = width; col > 0; col--) { |
238 |
/* get pixel value and index into the histogram */ |
239 |
histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] |
240 |
[GETJSAMPLE(ptr[1]) >> C1_SHIFT] |
241 |
[GETJSAMPLE(ptr[2]) >> C2_SHIFT]; |
242 |
/* increment, check for overflow and undo increment if so. */ |
243 |
if (++(*histp) <= 0) |
244 |
(*histp)--; |
245 |
ptr += 3; |
246 |
} |
247 |
} |
248 |
} |
249 |
|
250 |
|
251 |
/* |
252 |
* Next we have the really interesting routines: selection of a colormap |
253 |
* given the completed histogram. |
254 |
* These routines work with a list of "boxes", each representing a rectangular |
255 |
* subset of the input color space (to histogram precision). |
256 |
*/ |
257 |
|
258 |
typedef struct { |
259 |
/* The bounds of the box (inclusive); expressed as histogram indexes */ |
260 |
int c0min, c0max; |
261 |
int c1min, c1max; |
262 |
int c2min, c2max; |
263 |
/* The volume (actually 2-norm) of the box */ |
264 |
INT32 volume; |
265 |
/* The number of nonzero histogram cells within this box */ |
266 |
long colorcount; |
267 |
} box; |
268 |
|
269 |
typedef box * boxptr; |
270 |
|
271 |
|
272 |
LOCAL(boxptr) |
273 |
find_biggest_color_pop (boxptr boxlist, int numboxes) |
274 |
/* Find the splittable box with the largest color population */ |
275 |
/* Returns NULL if no splittable boxes remain */ |
276 |
{ |
277 |
register boxptr boxp; |
278 |
register int i; |
279 |
register long maxc = 0; |
280 |
boxptr which = NULL; |
281 |
|
282 |
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
283 |
if (boxp->colorcount > maxc && boxp->volume > 0) { |
284 |
which = boxp; |
285 |
maxc = boxp->colorcount; |
286 |
} |
287 |
} |
288 |
return which; |
289 |
} |
290 |
|
291 |
|
292 |
LOCAL(boxptr) |
293 |
find_biggest_volume (boxptr boxlist, int numboxes) |
294 |
/* Find the splittable box with the largest (scaled) volume */ |
295 |
/* Returns NULL if no splittable boxes remain */ |
296 |
{ |
297 |
register boxptr boxp; |
298 |
register int i; |
299 |
register INT32 maxv = 0; |
300 |
boxptr which = NULL; |
301 |
|
302 |
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
303 |
if (boxp->volume > maxv) { |
304 |
which = boxp; |
305 |
maxv = boxp->volume; |
306 |
} |
307 |
} |
308 |
return which; |
309 |
} |
310 |
|
311 |
|
312 |
LOCAL(void) |
313 |
update_box (j_decompress_ptr cinfo, boxptr boxp) |
314 |
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */ |
315 |
/* and recompute its volume and population */ |
316 |
{ |
317 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
318 |
hist3d histogram = cquantize->histogram; |
319 |
histptr histp; |
320 |
int c0,c1,c2; |
321 |
int c0min,c0max,c1min,c1max,c2min,c2max; |
322 |
INT32 dist0,dist1,dist2; |
323 |
long ccount; |
324 |
|
325 |
c0min = boxp->c0min; c0max = boxp->c0max; |
326 |
c1min = boxp->c1min; c1max = boxp->c1max; |
327 |
c2min = boxp->c2min; c2max = boxp->c2max; |
328 |
|
329 |
if (c0max > c0min) |
330 |
for (c0 = c0min; c0 <= c0max; c0++) |
331 |
for (c1 = c1min; c1 <= c1max; c1++) { |
332 |
histp = & histogram[c0][c1][c2min]; |
333 |
for (c2 = c2min; c2 <= c2max; c2++) |
334 |
if (*histp++ != 0) { |
335 |
boxp->c0min = c0min = c0; |
336 |
goto have_c0min; |
337 |
} |
338 |
} |
339 |
have_c0min: |
340 |
if (c0max > c0min) |
341 |
for (c0 = c0max; c0 >= c0min; c0--) |
342 |
for (c1 = c1min; c1 <= c1max; c1++) { |
343 |
histp = & histogram[c0][c1][c2min]; |
344 |
for (c2 = c2min; c2 <= c2max; c2++) |
345 |
if (*histp++ != 0) { |
346 |
boxp->c0max = c0max = c0; |
347 |
goto have_c0max; |
348 |
} |
349 |
} |
350 |
have_c0max: |
351 |
if (c1max > c1min) |
352 |
for (c1 = c1min; c1 <= c1max; c1++) |
353 |
for (c0 = c0min; c0 <= c0max; c0++) { |
354 |
histp = & histogram[c0][c1][c2min]; |
355 |
for (c2 = c2min; c2 <= c2max; c2++) |
356 |
if (*histp++ != 0) { |
357 |
boxp->c1min = c1min = c1; |
358 |
goto have_c1min; |
359 |
} |
360 |
} |
361 |
have_c1min: |
362 |
if (c1max > c1min) |
363 |
for (c1 = c1max; c1 >= c1min; c1--) |
364 |
for (c0 = c0min; c0 <= c0max; c0++) { |
365 |
histp = & histogram[c0][c1][c2min]; |
366 |
for (c2 = c2min; c2 <= c2max; c2++) |
367 |
if (*histp++ != 0) { |
368 |
boxp->c1max = c1max = c1; |
369 |
goto have_c1max; |
370 |
} |
371 |
} |
372 |
have_c1max: |
373 |
if (c2max > c2min) |
374 |
for (c2 = c2min; c2 <= c2max; c2++) |
375 |
for (c0 = c0min; c0 <= c0max; c0++) { |
376 |
histp = & histogram[c0][c1min][c2]; |
377 |
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
378 |
if (*histp != 0) { |
379 |
boxp->c2min = c2min = c2; |
380 |
goto have_c2min; |
381 |
} |
382 |
} |
383 |
have_c2min: |
384 |
if (c2max > c2min) |
385 |
for (c2 = c2max; c2 >= c2min; c2--) |
386 |
for (c0 = c0min; c0 <= c0max; c0++) { |
387 |
histp = & histogram[c0][c1min][c2]; |
388 |
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
389 |
if (*histp != 0) { |
390 |
boxp->c2max = c2max = c2; |
391 |
goto have_c2max; |
392 |
} |
393 |
} |
394 |
have_c2max: |
395 |
|
396 |
/* Update box volume. |
397 |
* We use 2-norm rather than real volume here; this biases the method |
398 |
* against making long narrow boxes, and it has the side benefit that |
399 |
* a box is splittable iff norm > 0. |
400 |
* Since the differences are expressed in histogram-cell units, |
401 |
* we have to shift back to JSAMPLE units to get consistent distances; |
402 |
* after which, we scale according to the selected distance scale factors. |
403 |
*/ |
404 |
dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; |
405 |
dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; |
406 |
dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; |
407 |
boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; |
408 |
|
409 |
/* Now scan remaining volume of box and compute population */ |
410 |
ccount = 0; |
411 |
for (c0 = c0min; c0 <= c0max; c0++) |
412 |
for (c1 = c1min; c1 <= c1max; c1++) { |
413 |
histp = & histogram[c0][c1][c2min]; |
414 |
for (c2 = c2min; c2 <= c2max; c2++, histp++) |
415 |
if (*histp != 0) { |
416 |
ccount++; |
417 |
} |
418 |
} |
419 |
boxp->colorcount = ccount; |
420 |
} |
421 |
|
422 |
|
423 |
LOCAL(int) |
424 |
median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, |
425 |
int desired_colors) |
426 |
/* Repeatedly select and split the largest box until we have enough boxes */ |
427 |
{ |
428 |
int n,lb; |
429 |
int c0,c1,c2,cmax; |
430 |
register boxptr b1,b2; |
431 |
|
432 |
while (numboxes < desired_colors) { |
433 |
/* Select box to split. |
434 |
* Current algorithm: by population for first half, then by volume. |
435 |
*/ |
436 |
if (numboxes*2 <= desired_colors) { |
437 |
b1 = find_biggest_color_pop(boxlist, numboxes); |
438 |
} else { |
439 |
b1 = find_biggest_volume(boxlist, numboxes); |
440 |
} |
441 |
if (b1 == NULL) /* no splittable boxes left! */ |
442 |
break; |
443 |
b2 = &boxlist[numboxes]; /* where new box will go */ |
444 |
/* Copy the color bounds to the new box. */ |
445 |
b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; |
446 |
b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; |
447 |
/* Choose which axis to split the box on. |
448 |
* Current algorithm: longest scaled axis. |
449 |
* See notes in update_box about scaling distances. |
450 |
*/ |
451 |
c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; |
452 |
c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; |
453 |
c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; |
454 |
/* We want to break any ties in favor of green, then red, blue last. |
455 |
* This code does the right thing for R,G,B or B,G,R color orders only. |
456 |
*/ |
457 |
#if RGB_RED == 0 |
458 |
cmax = c1; n = 1; |
459 |
if (c0 > cmax) { cmax = c0; n = 0; } |
460 |
if (c2 > cmax) { n = 2; } |
461 |
#else |
462 |
cmax = c1; n = 1; |
463 |
if (c2 > cmax) { cmax = c2; n = 2; } |
464 |
if (c0 > cmax) { n = 0; } |
465 |
#endif |
466 |
/* Choose split point along selected axis, and update box bounds. |
467 |
* Current algorithm: split at halfway point. |
468 |
* (Since the box has been shrunk to minimum volume, |
469 |
* any split will produce two nonempty subboxes.) |
470 |
* Note that lb value is max for lower box, so must be < old max. |
471 |
*/ |
472 |
switch (n) { |
473 |
case 0: |
474 |
lb = (b1->c0max + b1->c0min) / 2; |
475 |
b1->c0max = lb; |
476 |
b2->c0min = lb+1; |
477 |
break; |
478 |
case 1: |
479 |
lb = (b1->c1max + b1->c1min) / 2; |
480 |
b1->c1max = lb; |
481 |
b2->c1min = lb+1; |
482 |
break; |
483 |
case 2: |
484 |
lb = (b1->c2max + b1->c2min) / 2; |
485 |
b1->c2max = lb; |
486 |
b2->c2min = lb+1; |
487 |
break; |
488 |
} |
489 |
/* Update stats for boxes */ |
490 |
update_box(cinfo, b1); |
491 |
update_box(cinfo, b2); |
492 |
numboxes++; |
493 |
} |
494 |
return numboxes; |
495 |
} |
496 |
|
497 |
|
498 |
LOCAL(void) |
499 |
compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) |
500 |
/* Compute representative color for a box, put it in colormap[icolor] */ |
501 |
{ |
502 |
/* Current algorithm: mean weighted by pixels (not colors) */ |
503 |
/* Note it is important to get the rounding correct! */ |
504 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
505 |
hist3d histogram = cquantize->histogram; |
506 |
histptr histp; |
507 |
int c0,c1,c2; |
508 |
int c0min,c0max,c1min,c1max,c2min,c2max; |
509 |
long count; |
510 |
long total = 0; |
511 |
long c0total = 0; |
512 |
long c1total = 0; |
513 |
long c2total = 0; |
514 |
|
515 |
c0min = boxp->c0min; c0max = boxp->c0max; |
516 |
c1min = boxp->c1min; c1max = boxp->c1max; |
517 |
c2min = boxp->c2min; c2max = boxp->c2max; |
518 |
|
519 |
for (c0 = c0min; c0 <= c0max; c0++) |
520 |
for (c1 = c1min; c1 <= c1max; c1++) { |
521 |
histp = & histogram[c0][c1][c2min]; |
522 |
for (c2 = c2min; c2 <= c2max; c2++) { |
523 |
if ((count = *histp++) != 0) { |
524 |
total += count; |
525 |
c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; |
526 |
c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; |
527 |
c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; |
528 |
} |
529 |
} |
530 |
} |
531 |
|
532 |
cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); |
533 |
cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); |
534 |
cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); |
535 |
} |
536 |
|
537 |
|
538 |
LOCAL(void) |
539 |
select_colors (j_decompress_ptr cinfo, int desired_colors) |
540 |
/* Master routine for color selection */ |
541 |
{ |
542 |
boxptr boxlist; |
543 |
int numboxes; |
544 |
int i; |
545 |
|
546 |
/* Allocate workspace for box list */ |
547 |
boxlist = (boxptr) (*cinfo->mem->alloc_small) |
548 |
((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); |
549 |
/* Initialize one box containing whole space */ |
550 |
numboxes = 1; |
551 |
boxlist[0].c0min = 0; |
552 |
boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; |
553 |
boxlist[0].c1min = 0; |
554 |
boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; |
555 |
boxlist[0].c2min = 0; |
556 |
boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; |
557 |
/* Shrink it to actually-used volume and set its statistics */ |
558 |
update_box(cinfo, & boxlist[0]); |
559 |
/* Perform median-cut to produce final box list */ |
560 |
numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); |
561 |
/* Compute the representative color for each box, fill colormap */ |
562 |
for (i = 0; i < numboxes; i++) |
563 |
compute_color(cinfo, & boxlist[i], i); |
564 |
cinfo->actual_number_of_colors = numboxes; |
565 |
TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); |
566 |
} |
567 |
|
568 |
|
569 |
/* |
570 |
* These routines are concerned with the time-critical task of mapping input |
571 |
* colors to the nearest color in the selected colormap. |
572 |
* |
573 |
* We re-use the histogram space as an "inverse color map", essentially a |
574 |
* cache for the results of nearest-color searches. All colors within a |
575 |
* histogram cell will be mapped to the same colormap entry, namely the one |
576 |
* closest to the cell's center. This may not be quite the closest entry to |
577 |
* the actual input color, but it's almost as good. A zero in the cache |
578 |
* indicates we haven't found the nearest color for that cell yet; the array |
579 |
* is cleared to zeroes before starting the mapping pass. When we find the |
580 |
* nearest color for a cell, its colormap index plus one is recorded in the |
581 |
* cache for future use. The pass2 scanning routines call fill_inverse_cmap |
582 |
* when they need to use an unfilled entry in the cache. |
583 |
* |
584 |
* Our method of efficiently finding nearest colors is based on the "locally |
585 |
* sorted search" idea described by Heckbert and on the incremental distance |
586 |
* calculation described by Spencer W. Thomas in chapter III.1 of Graphics |
587 |
* Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that |
588 |
* the distances from a given colormap entry to each cell of the histogram can |
589 |
* be computed quickly using an incremental method: the differences between |
590 |
* distances to adjacent cells themselves differ by a constant. This allows a |
591 |
* fairly fast implementation of the "brute force" approach of computing the |
592 |
* distance from every colormap entry to every histogram cell. Unfortunately, |
593 |
* it needs a work array to hold the best-distance-so-far for each histogram |
594 |
* cell (because the inner loop has to be over cells, not colormap entries). |
595 |
* The work array elements have to be INT32s, so the work array would need |
596 |
* 256Kb at our recommended precision. This is not feasible in DOS machines. |
597 |
* |
598 |
* To get around these problems, we apply Thomas' method to compute the |
599 |
* nearest colors for only the cells within a small subbox of the histogram. |
600 |
* The work array need be only as big as the subbox, so the memory usage |
601 |
* problem is solved. Furthermore, we need not fill subboxes that are never |
602 |
* referenced in pass2; many images use only part of the color gamut, so a |
603 |
* fair amount of work is saved. An additional advantage of this |
604 |
* approach is that we can apply Heckbert's locality criterion to quickly |
605 |
* eliminate colormap entries that are far away from the subbox; typically |
606 |
* three-fourths of the colormap entries are rejected by Heckbert's criterion, |
607 |
* and we need not compute their distances to individual cells in the subbox. |
608 |
* The speed of this approach is heavily influenced by the subbox size: too |
609 |
* small means too much overhead, too big loses because Heckbert's criterion |
610 |
* can't eliminate as many colormap entries. Empirically the best subbox |
611 |
* size seems to be about 1/512th of the histogram (1/8th in each direction). |
612 |
* |
613 |
* Thomas' article also describes a refined method which is asymptotically |
614 |
* faster than the brute-force method, but it is also far more complex and |
615 |
* cannot efficiently be applied to small subboxes. It is therefore not |
616 |
* useful for programs intended to be portable to DOS machines. On machines |
617 |
* with plenty of memory, filling the whole histogram in one shot with Thomas' |
618 |
* refined method might be faster than the present code --- but then again, |
619 |
* it might not be any faster, and it's certainly more complicated. |
620 |
*/ |
621 |
|
622 |
|
623 |
/* log2(histogram cells in update box) for each axis; this can be adjusted */ |
624 |
#define BOX_C0_LOG (HIST_C0_BITS-3) |
625 |
#define BOX_C1_LOG (HIST_C1_BITS-3) |
626 |
#define BOX_C2_LOG (HIST_C2_BITS-3) |
627 |
|
628 |
#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ |
629 |
#define BOX_C1_ELEMS (1<<BOX_C1_LOG) |
630 |
#define BOX_C2_ELEMS (1<<BOX_C2_LOG) |
631 |
|
632 |
#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) |
633 |
#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) |
634 |
#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) |
635 |
|
636 |
|
637 |
/* |
638 |
* The next three routines implement inverse colormap filling. They could |
639 |
* all be folded into one big routine, but splitting them up this way saves |
640 |
* some stack space (the mindist[] and bestdist[] arrays need not coexist) |
641 |
* and may allow some compilers to produce better code by registerizing more |
642 |
* inner-loop variables. |
643 |
*/ |
644 |
|
645 |
LOCAL(int) |
646 |
find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
647 |
JSAMPLE colorlist[]) |
648 |
/* Locate the colormap entries close enough to an update box to be candidates |
649 |
* for the nearest entry to some cell(s) in the update box. The update box |
650 |
* is specified by the center coordinates of its first cell. The number of |
651 |
* candidate colormap entries is returned, and their colormap indexes are |
652 |
* placed in colorlist[]. |
653 |
* This routine uses Heckbert's "locally sorted search" criterion to select |
654 |
* the colors that need further consideration. |
655 |
*/ |
656 |
{ |
657 |
int numcolors = cinfo->actual_number_of_colors; |
658 |
int maxc0, maxc1, maxc2; |
659 |
int centerc0, centerc1, centerc2; |
660 |
int i, x, ncolors; |
661 |
INT32 minmaxdist, min_dist, max_dist, tdist; |
662 |
INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ |
663 |
|
664 |
/* Compute true coordinates of update box's upper corner and center. |
665 |
* Actually we compute the coordinates of the center of the upper-corner |
666 |
* histogram cell, which are the upper bounds of the volume we care about. |
667 |
* Note that since ">>" rounds down, the "center" values may be closer to |
668 |
* min than to max; hence comparisons to them must be "<=", not "<". |
669 |
*/ |
670 |
maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); |
671 |
centerc0 = (minc0 + maxc0) >> 1; |
672 |
maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); |
673 |
centerc1 = (minc1 + maxc1) >> 1; |
674 |
maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); |
675 |
centerc2 = (minc2 + maxc2) >> 1; |
676 |
|
677 |
/* For each color in colormap, find: |
678 |
* 1. its minimum squared-distance to any point in the update box |
679 |
* (zero if color is within update box); |
680 |
* 2. its maximum squared-distance to any point in the update box. |
681 |
* Both of these can be found by considering only the corners of the box. |
682 |
* We save the minimum distance for each color in mindist[]; |
683 |
* only the smallest maximum distance is of interest. |
684 |
*/ |
685 |
minmaxdist = 0x7FFFFFFFL; |
686 |
|
687 |
for (i = 0; i < numcolors; i++) { |
688 |
/* We compute the squared-c0-distance term, then add in the other two. */ |
689 |
x = GETJSAMPLE(cinfo->colormap[0][i]); |
690 |
if (x < minc0) { |
691 |
tdist = (x - minc0) * C0_SCALE; |
692 |
min_dist = tdist*tdist; |
693 |
tdist = (x - maxc0) * C0_SCALE; |
694 |
max_dist = tdist*tdist; |
695 |
} else if (x > maxc0) { |
696 |
tdist = (x - maxc0) * C0_SCALE; |
697 |
min_dist = tdist*tdist; |
698 |
tdist = (x - minc0) * C0_SCALE; |
699 |
max_dist = tdist*tdist; |
700 |
} else { |
701 |
/* within cell range so no contribution to min_dist */ |
702 |
min_dist = 0; |
703 |
if (x <= centerc0) { |
704 |
tdist = (x - maxc0) * C0_SCALE; |
705 |
max_dist = tdist*tdist; |
706 |
} else { |
707 |
tdist = (x - minc0) * C0_SCALE; |
708 |
max_dist = tdist*tdist; |
709 |
} |
710 |
} |
711 |
|
712 |
x = GETJSAMPLE(cinfo->colormap[1][i]); |
713 |
if (x < minc1) { |
714 |
tdist = (x - minc1) * C1_SCALE; |
715 |
min_dist += tdist*tdist; |
716 |
tdist = (x - maxc1) * C1_SCALE; |
717 |
max_dist += tdist*tdist; |
718 |
} else if (x > maxc1) { |
719 |
tdist = (x - maxc1) * C1_SCALE; |
720 |
min_dist += tdist*tdist; |
721 |
tdist = (x - minc1) * C1_SCALE; |
722 |
max_dist += tdist*tdist; |
723 |
} else { |
724 |
/* within cell range so no contribution to min_dist */ |
725 |
if (x <= centerc1) { |
726 |
tdist = (x - maxc1) * C1_SCALE; |
727 |
max_dist += tdist*tdist; |
728 |
} else { |
729 |
tdist = (x - minc1) * C1_SCALE; |
730 |
max_dist += tdist*tdist; |
731 |
} |
732 |
} |
733 |
|
734 |
x = GETJSAMPLE(cinfo->colormap[2][i]); |
735 |
if (x < minc2) { |
736 |
tdist = (x - minc2) * C2_SCALE; |
737 |
min_dist += tdist*tdist; |
738 |
tdist = (x - maxc2) * C2_SCALE; |
739 |
max_dist += tdist*tdist; |
740 |
} else if (x > maxc2) { |
741 |
tdist = (x - maxc2) * C2_SCALE; |
742 |
min_dist += tdist*tdist; |
743 |
tdist = (x - minc2) * C2_SCALE; |
744 |
max_dist += tdist*tdist; |
745 |
} else { |
746 |
/* within cell range so no contribution to min_dist */ |
747 |
if (x <= centerc2) { |
748 |
tdist = (x - maxc2) * C2_SCALE; |
749 |
max_dist += tdist*tdist; |
750 |
} else { |
751 |
tdist = (x - minc2) * C2_SCALE; |
752 |
max_dist += tdist*tdist; |
753 |
} |
754 |
} |
755 |
|
756 |
mindist[i] = min_dist; /* save away the results */ |
757 |
if (max_dist < minmaxdist) |
758 |
minmaxdist = max_dist; |
759 |
} |
760 |
|
761 |
/* Now we know that no cell in the update box is more than minmaxdist |
762 |
* away from some colormap entry. Therefore, only colors that are |
763 |
* within minmaxdist of some part of the box need be considered. |
764 |
*/ |
765 |
ncolors = 0; |
766 |
for (i = 0; i < numcolors; i++) { |
767 |
if (mindist[i] <= minmaxdist) |
768 |
colorlist[ncolors++] = (JSAMPLE) i; |
769 |
} |
770 |
return ncolors; |
771 |
} |
772 |
|
773 |
|
774 |
LOCAL(void) |
775 |
find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
776 |
int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) |
777 |
/* Find the closest colormap entry for each cell in the update box, |
778 |
* given the list of candidate colors prepared by find_nearby_colors. |
779 |
* Return the indexes of the closest entries in the bestcolor[] array. |
780 |
* This routine uses Thomas' incremental distance calculation method to |
781 |
* find the distance from a colormap entry to successive cells in the box. |
782 |
*/ |
783 |
{ |
784 |
int ic0, ic1, ic2; |
785 |
int i, icolor; |
786 |
register INT32 * bptr; /* pointer into bestdist[] array */ |
787 |
JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
788 |
INT32 dist0, dist1; /* initial distance values */ |
789 |
register INT32 dist2; /* current distance in inner loop */ |
790 |
INT32 xx0, xx1; /* distance increments */ |
791 |
register INT32 xx2; |
792 |
INT32 inc0, inc1, inc2; /* initial values for increments */ |
793 |
/* This array holds the distance to the nearest-so-far color for each cell */ |
794 |
INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
795 |
|
796 |
/* Initialize best-distance for each cell of the update box */ |
797 |
bptr = bestdist; |
798 |
for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) |
799 |
*bptr++ = 0x7FFFFFFFL; |
800 |
|
801 |
/* For each color selected by find_nearby_colors, |
802 |
* compute its distance to the center of each cell in the box. |
803 |
* If that's less than best-so-far, update best distance and color number. |
804 |
*/ |
805 |
|
806 |
/* Nominal steps between cell centers ("x" in Thomas article) */ |
807 |
#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) |
808 |
#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) |
809 |
#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) |
810 |
|
811 |
for (i = 0; i < numcolors; i++) { |
812 |
icolor = GETJSAMPLE(colorlist[i]); |
813 |
/* Compute (square of) distance from minc0/c1/c2 to this color */ |
814 |
inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; |
815 |
dist0 = inc0*inc0; |
816 |
inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; |
817 |
dist0 += inc1*inc1; |
818 |
inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; |
819 |
dist0 += inc2*inc2; |
820 |
/* Form the initial difference increments */ |
821 |
inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; |
822 |
inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; |
823 |
inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; |
824 |
/* Now loop over all cells in box, updating distance per Thomas method */ |
825 |
bptr = bestdist; |
826 |
cptr = bestcolor; |
827 |
xx0 = inc0; |
828 |
for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { |
829 |
dist1 = dist0; |
830 |
xx1 = inc1; |
831 |
for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { |
832 |
dist2 = dist1; |
833 |
xx2 = inc2; |
834 |
for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { |
835 |
if (dist2 < *bptr) { |
836 |
*bptr = dist2; |
837 |
*cptr = (JSAMPLE) icolor; |
838 |
} |
839 |
dist2 += xx2; |
840 |
xx2 += 2 * STEP_C2 * STEP_C2; |
841 |
bptr++; |
842 |
cptr++; |
843 |
} |
844 |
dist1 += xx1; |
845 |
xx1 += 2 * STEP_C1 * STEP_C1; |
846 |
} |
847 |
dist0 += xx0; |
848 |
xx0 += 2 * STEP_C0 * STEP_C0; |
849 |
} |
850 |
} |
851 |
} |
852 |
|
853 |
|
854 |
LOCAL(void) |
855 |
fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
856 |
/* Fill the inverse-colormap entries in the update box that contains */ |
857 |
/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ |
858 |
/* we can fill as many others as we wish.) */ |
859 |
{ |
860 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
861 |
hist3d histogram = cquantize->histogram; |
862 |
int minc0, minc1, minc2; /* lower left corner of update box */ |
863 |
int ic0, ic1, ic2; |
864 |
register JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
865 |
register histptr cachep; /* pointer into main cache array */ |
866 |
/* This array lists the candidate colormap indexes. */ |
867 |
JSAMPLE colorlist[MAXNUMCOLORS]; |
868 |
int numcolors; /* number of candidate colors */ |
869 |
/* This array holds the actually closest colormap index for each cell. */ |
870 |
JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
871 |
|
872 |
/* Convert cell coordinates to update box ID */ |
873 |
c0 >>= BOX_C0_LOG; |
874 |
c1 >>= BOX_C1_LOG; |
875 |
c2 >>= BOX_C2_LOG; |
876 |
|
877 |
/* Compute true coordinates of update box's origin corner. |
878 |
* Actually we compute the coordinates of the center of the corner |
879 |
* histogram cell, which are the lower bounds of the volume we care about. |
880 |
*/ |
881 |
minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); |
882 |
minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); |
883 |
minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); |
884 |
|
885 |
/* Determine which colormap entries are close enough to be candidates |
886 |
* for the nearest entry to some cell in the update box. |
887 |
*/ |
888 |
numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); |
889 |
|
890 |
/* Determine the actually nearest colors. */ |
891 |
find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, |
892 |
bestcolor); |
893 |
|
894 |
/* Save the best color numbers (plus 1) in the main cache array */ |
895 |
c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ |
896 |
c1 <<= BOX_C1_LOG; |
897 |
c2 <<= BOX_C2_LOG; |
898 |
cptr = bestcolor; |
899 |
for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { |
900 |
for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { |
901 |
cachep = & histogram[c0+ic0][c1+ic1][c2]; |
902 |
for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { |
903 |
*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); |
904 |
} |
905 |
} |
906 |
} |
907 |
} |
908 |
|
909 |
|
910 |
/* |
911 |
* Map some rows of pixels to the output colormapped representation. |
912 |
*/ |
913 |
|
914 |
METHODDEF(void) |
915 |
pass2_no_dither (j_decompress_ptr cinfo, |
916 |
JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
917 |
/* This version performs no dithering */ |
918 |
{ |
919 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
920 |
hist3d histogram = cquantize->histogram; |
921 |
register JSAMPROW inptr, outptr; |
922 |
register histptr cachep; |
923 |
register int c0, c1, c2; |
924 |
int row; |
925 |
JDIMENSION col; |
926 |
JDIMENSION width = cinfo->output_width; |
927 |
|
928 |
for (row = 0; row < num_rows; row++) { |
929 |
inptr = input_buf[row]; |
930 |
outptr = output_buf[row]; |
931 |
for (col = width; col > 0; col--) { |
932 |
/* get pixel value and index into the cache */ |
933 |
c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; |
934 |
c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; |
935 |
c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; |
936 |
cachep = & histogram[c0][c1][c2]; |
937 |
/* If we have not seen this color before, find nearest colormap entry */ |
938 |
/* and update the cache */ |
939 |
if (*cachep == 0) |
940 |
fill_inverse_cmap(cinfo, c0,c1,c2); |
941 |
/* Now emit the colormap index for this cell */ |
942 |
*outptr++ = (JSAMPLE) (*cachep - 1); |
943 |
} |
944 |
} |
945 |
} |
946 |
|
947 |
|
948 |
METHODDEF(void) |
949 |
pass2_fs_dither (j_decompress_ptr cinfo, |
950 |
JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
951 |
/* This version performs Floyd-Steinberg dithering */ |
952 |
{ |
953 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
954 |
hist3d histogram = cquantize->histogram; |
955 |
register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ |
956 |
LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ |
957 |
LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ |
958 |
register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
959 |
JSAMPROW inptr; /* => current input pixel */ |
960 |
JSAMPROW outptr; /* => current output pixel */ |
961 |
histptr cachep; |
962 |
int dir; /* +1 or -1 depending on direction */ |
963 |
int dir3; /* 3*dir, for advancing inptr & errorptr */ |
964 |
int row; |
965 |
JDIMENSION col; |
966 |
JDIMENSION width = cinfo->output_width; |
967 |
JSAMPLE *range_limit = cinfo->sample_range_limit; |
968 |
int *error_limit = cquantize->error_limiter; |
969 |
JSAMPROW colormap0 = cinfo->colormap[0]; |
970 |
JSAMPROW colormap1 = cinfo->colormap[1]; |
971 |
JSAMPROW colormap2 = cinfo->colormap[2]; |
972 |
SHIFT_TEMPS |
973 |
|
974 |
for (row = 0; row < num_rows; row++) { |
975 |
inptr = input_buf[row]; |
976 |
outptr = output_buf[row]; |
977 |
if (cquantize->on_odd_row) { |
978 |
/* work right to left in this row */ |
979 |
inptr += (width-1) * 3; /* so point to rightmost pixel */ |
980 |
outptr += width-1; |
981 |
dir = -1; |
982 |
dir3 = -3; |
983 |
errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ |
984 |
cquantize->on_odd_row = FALSE; /* flip for next time */ |
985 |
} else { |
986 |
/* work left to right in this row */ |
987 |
dir = 1; |
988 |
dir3 = 3; |
989 |
errorptr = cquantize->fserrors; /* => entry before first real column */ |
990 |
cquantize->on_odd_row = TRUE; /* flip for next time */ |
991 |
} |
992 |
/* Preset error values: no error propagated to first pixel from left */ |
993 |
cur0 = cur1 = cur2 = 0; |
994 |
/* and no error propagated to row below yet */ |
995 |
belowerr0 = belowerr1 = belowerr2 = 0; |
996 |
bpreverr0 = bpreverr1 = bpreverr2 = 0; |
997 |
|
998 |
for (col = width; col > 0; col--) { |
999 |
/* curN holds the error propagated from the previous pixel on the |
1000 |
* current line. Add the error propagated from the previous line |
1001 |
* to form the complete error correction term for this pixel, and |
1002 |
* round the error term (which is expressed * 16) to an integer. |
1003 |
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
1004 |
* for either sign of the error value. |
1005 |
* Note: errorptr points to *previous* column's array entry. |
1006 |
*/ |
1007 |
cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); |
1008 |
cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); |
1009 |
cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); |
1010 |
/* Limit the error using transfer function set by init_error_limit. |
1011 |
* See comments with init_error_limit for rationale. |
1012 |
*/ |
1013 |
cur0 = error_limit[cur0]; |
1014 |
cur1 = error_limit[cur1]; |
1015 |
cur2 = error_limit[cur2]; |
1016 |
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
1017 |
* The maximum error is +- MAXJSAMPLE (or less with error limiting); |
1018 |
* this sets the required size of the range_limit array. |
1019 |
*/ |
1020 |
cur0 += GETJSAMPLE(inptr[0]); |
1021 |
cur1 += GETJSAMPLE(inptr[1]); |
1022 |
cur2 += GETJSAMPLE(inptr[2]); |
1023 |
cur0 = GETJSAMPLE(range_limit[cur0]); |
1024 |
cur1 = GETJSAMPLE(range_limit[cur1]); |
1025 |
cur2 = GETJSAMPLE(range_limit[cur2]); |
1026 |
/* Index into the cache with adjusted pixel value */ |
1027 |
cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; |
1028 |
/* If we have not seen this color before, find nearest colormap */ |
1029 |
/* entry and update the cache */ |
1030 |
if (*cachep == 0) |
1031 |
fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); |
1032 |
/* Now emit the colormap index for this cell */ |
1033 |
{ register int pixcode = *cachep - 1; |
1034 |
*outptr = (JSAMPLE) pixcode; |
1035 |
/* Compute representation error for this pixel */ |
1036 |
cur0 -= GETJSAMPLE(colormap0[pixcode]); |
1037 |
cur1 -= GETJSAMPLE(colormap1[pixcode]); |
1038 |
cur2 -= GETJSAMPLE(colormap2[pixcode]); |
1039 |
} |
1040 |
/* Compute error fractions to be propagated to adjacent pixels. |
1041 |
* Add these into the running sums, and simultaneously shift the |
1042 |
* next-line error sums left by 1 column. |
1043 |
*/ |
1044 |
{ register LOCFSERROR bnexterr, delta; |
1045 |
|
1046 |
bnexterr = cur0; /* Process component 0 */ |
1047 |
delta = cur0 * 2; |
1048 |
cur0 += delta; /* form error * 3 */ |
1049 |
errorptr[0] = (FSERROR) (bpreverr0 + cur0); |
1050 |
cur0 += delta; /* form error * 5 */ |
1051 |
bpreverr0 = belowerr0 + cur0; |
1052 |
belowerr0 = bnexterr; |
1053 |
cur0 += delta; /* form error * 7 */ |
1054 |
bnexterr = cur1; /* Process component 1 */ |
1055 |
delta = cur1 * 2; |
1056 |
cur1 += delta; /* form error * 3 */ |
1057 |
errorptr[1] = (FSERROR) (bpreverr1 + cur1); |
1058 |
cur1 += delta; /* form error * 5 */ |
1059 |
bpreverr1 = belowerr1 + cur1; |
1060 |
belowerr1 = bnexterr; |
1061 |
cur1 += delta; /* form error * 7 */ |
1062 |
bnexterr = cur2; /* Process component 2 */ |
1063 |
delta = cur2 * 2; |
1064 |
cur2 += delta; /* form error * 3 */ |
1065 |
errorptr[2] = (FSERROR) (bpreverr2 + cur2); |
1066 |
cur2 += delta; /* form error * 5 */ |
1067 |
bpreverr2 = belowerr2 + cur2; |
1068 |
belowerr2 = bnexterr; |
1069 |
cur2 += delta; /* form error * 7 */ |
1070 |
} |
1071 |
/* At this point curN contains the 7/16 error value to be propagated |
1072 |
* to the next pixel on the current line, and all the errors for the |
1073 |
* next line have been shifted over. We are therefore ready to move on. |
1074 |
*/ |
1075 |
inptr += dir3; /* Advance pixel pointers to next column */ |
1076 |
outptr += dir; |
1077 |
errorptr += dir3; /* advance errorptr to current column */ |
1078 |
} |
1079 |
/* Post-loop cleanup: we must unload the final error values into the |
1080 |
* final fserrors[] entry. Note we need not unload belowerrN because |
1081 |
* it is for the dummy column before or after the actual array. |
1082 |
*/ |
1083 |
errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ |
1084 |
errorptr[1] = (FSERROR) bpreverr1; |
1085 |
errorptr[2] = (FSERROR) bpreverr2; |
1086 |
} |
1087 |
} |
1088 |
|
1089 |
|
1090 |
/* |
1091 |
* Initialize the error-limiting transfer function (lookup table). |
1092 |
* The raw F-S error computation can potentially compute error values of up to |
1093 |
* +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be |
1094 |
* much less, otherwise obviously wrong pixels will be created. (Typical |
1095 |
* effects include weird fringes at color-area boundaries, isolated bright |
1096 |
* pixels in a dark area, etc.) The standard advice for avoiding this problem |
1097 |
* is to ensure that the "corners" of the color cube are allocated as output |
1098 |
* colors; then repeated errors in the same direction cannot cause cascading |
1099 |
* error buildup. However, that only prevents the error from getting |
1100 |
* completely out of hand; Aaron Giles reports that error limiting improves |
1101 |
* the results even with corner colors allocated. |
1102 |
* A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty |
1103 |
* well, but the smoother transfer function used below is even better. Thanks |
1104 |
* to Aaron Giles for this idea. |
1105 |
*/ |
1106 |
|
1107 |
LOCAL(void) |
1108 |
init_error_limit (j_decompress_ptr cinfo) |
1109 |
/* Allocate and fill in the error_limiter table */ |
1110 |
{ |
1111 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1112 |
int * table; |
1113 |
int in, out; |
1114 |
|
1115 |
table = (int *) (*cinfo->mem->alloc_small) |
1116 |
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); |
1117 |
table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ |
1118 |
cquantize->error_limiter = table; |
1119 |
|
1120 |
#define STEPSIZE ((MAXJSAMPLE+1)/16) |
1121 |
/* Map errors 1:1 up to +- MAXJSAMPLE/16 */ |
1122 |
out = 0; |
1123 |
for (in = 0; in < STEPSIZE; in++, out++) { |
1124 |
table[in] = out; table[-in] = -out; |
1125 |
} |
1126 |
/* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ |
1127 |
for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { |
1128 |
table[in] = out; table[-in] = -out; |
1129 |
} |
1130 |
/* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ |
1131 |
for (; in <= MAXJSAMPLE; in++) { |
1132 |
table[in] = out; table[-in] = -out; |
1133 |
} |
1134 |
#undef STEPSIZE |
1135 |
} |
1136 |
|
1137 |
|
1138 |
/* |
1139 |
* Finish up at the end of each pass. |
1140 |
*/ |
1141 |
|
1142 |
METHODDEF(void) |
1143 |
finish_pass1 (j_decompress_ptr cinfo) |
1144 |
{ |
1145 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1146 |
|
1147 |
/* Select the representative colors and fill in cinfo->colormap */ |
1148 |
cinfo->colormap = cquantize->sv_colormap; |
1149 |
select_colors(cinfo, cquantize->desired); |
1150 |
/* Force next pass to zero the color index table */ |
1151 |
cquantize->needs_zeroed = TRUE; |
1152 |
} |
1153 |
|
1154 |
|
1155 |
METHODDEF(void) |
1156 |
finish_pass2 (j_decompress_ptr cinfo) |
1157 |
{ |
1158 |
/* no work */ |
1159 |
} |
1160 |
|
1161 |
|
1162 |
/* |
1163 |
* Initialize for each processing pass. |
1164 |
*/ |
1165 |
|
1166 |
METHODDEF(void) |
1167 |
start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
1168 |
{ |
1169 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1170 |
hist3d histogram = cquantize->histogram; |
1171 |
int i; |
1172 |
|
1173 |
/* Only F-S dithering or no dithering is supported. */ |
1174 |
/* If user asks for ordered dither, give him F-S. */ |
1175 |
if (cinfo->dither_mode != JDITHER_NONE) |
1176 |
cinfo->dither_mode = JDITHER_FS; |
1177 |
|
1178 |
if (is_pre_scan) { |
1179 |
/* Set up method pointers */ |
1180 |
cquantize->pub.color_quantize = prescan_quantize; |
1181 |
cquantize->pub.finish_pass = finish_pass1; |
1182 |
cquantize->needs_zeroed = TRUE; /* Always zero histogram */ |
1183 |
} else { |
1184 |
/* Set up method pointers */ |
1185 |
if (cinfo->dither_mode == JDITHER_FS) |
1186 |
cquantize->pub.color_quantize = pass2_fs_dither; |
1187 |
else |
1188 |
cquantize->pub.color_quantize = pass2_no_dither; |
1189 |
cquantize->pub.finish_pass = finish_pass2; |
1190 |
|
1191 |
/* Make sure color count is acceptable */ |
1192 |
i = cinfo->actual_number_of_colors; |
1193 |
if (i < 1) |
1194 |
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); |
1195 |
if (i > MAXNUMCOLORS) |
1196 |
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
1197 |
|
1198 |
if (cinfo->dither_mode == JDITHER_FS) { |
1199 |
size_t arraysize = (size_t) ((cinfo->output_width + 2) * |
1200 |
(3 * SIZEOF(FSERROR))); |
1201 |
/* Allocate Floyd-Steinberg workspace if we didn't already. */ |
1202 |
if (cquantize->fserrors == NULL) |
1203 |
cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
1204 |
((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
1205 |
/* Initialize the propagated errors to zero. */ |
1206 |
jzero_far((void FAR *) cquantize->fserrors, arraysize); |
1207 |
/* Make the error-limit table if we didn't already. */ |
1208 |
if (cquantize->error_limiter == NULL) |
1209 |
init_error_limit(cinfo); |
1210 |
cquantize->on_odd_row = FALSE; |
1211 |
} |
1212 |
|
1213 |
} |
1214 |
/* Zero the histogram or inverse color map, if necessary */ |
1215 |
if (cquantize->needs_zeroed) { |
1216 |
for (i = 0; i < HIST_C0_ELEMS; i++) { |
1217 |
jzero_far((void FAR *) histogram[i], |
1218 |
HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
1219 |
} |
1220 |
cquantize->needs_zeroed = FALSE; |
1221 |
} |
1222 |
} |
1223 |
|
1224 |
|
1225 |
/* |
1226 |
* Switch to a new external colormap between output passes. |
1227 |
*/ |
1228 |
|
1229 |
METHODDEF(void) |
1230 |
new_color_map_2_quant (j_decompress_ptr cinfo) |
1231 |
{ |
1232 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1233 |
|
1234 |
/* Reset the inverse color map */ |
1235 |
cquantize->needs_zeroed = TRUE; |
1236 |
} |
1237 |
|
1238 |
|
1239 |
/* |
1240 |
* Module initialization routine for 2-pass color quantization. |
1241 |
*/ |
1242 |
|
1243 |
GLOBAL(void) |
1244 |
jinit_2pass_quantizer (j_decompress_ptr cinfo) |
1245 |
{ |
1246 |
my_cquantize_ptr cquantize; |
1247 |
int i; |
1248 |
|
1249 |
cquantize = (my_cquantize_ptr) |
1250 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1251 |
SIZEOF(my_cquantizer)); |
1252 |
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
1253 |
cquantize->pub.start_pass = start_pass_2_quant; |
1254 |
cquantize->pub.new_color_map = new_color_map_2_quant; |
1255 |
cquantize->fserrors = NULL; /* flag optional arrays not allocated */ |
1256 |
cquantize->error_limiter = NULL; |
1257 |
|
1258 |
/* Make sure jdmaster didn't give me a case I can't handle */ |
1259 |
if (cinfo->out_color_components != 3) |
1260 |
ERREXIT(cinfo, JERR_NOTIMPL); |
1261 |
|
1262 |
/* Allocate the histogram/inverse colormap storage */ |
1263 |
cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) |
1264 |
((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); |
1265 |
for (i = 0; i < HIST_C0_ELEMS; i++) { |
1266 |
cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) |
1267 |
((j_common_ptr) cinfo, JPOOL_IMAGE, |
1268 |
HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
1269 |
} |
1270 |
cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ |
1271 |
|
1272 |
/* Allocate storage for the completed colormap, if required. |
1273 |
* We do this now since it is FAR storage and may affect |
1274 |
* the memory manager's space calculations. |
1275 |
*/ |
1276 |
if (cinfo->enable_2pass_quant) { |
1277 |
/* Make sure color count is acceptable */ |
1278 |
int desired = cinfo->desired_number_of_colors; |
1279 |
/* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ |
1280 |
if (desired < 8) |
1281 |
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); |
1282 |
/* Make sure colormap indexes can be represented by JSAMPLEs */ |
1283 |
if (desired > MAXNUMCOLORS) |
1284 |
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
1285 |
cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) |
1286 |
((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); |
1287 |
cquantize->desired = desired; |
1288 |
} else |
1289 |
cquantize->sv_colormap = NULL; |
1290 |
|
1291 |
/* Only F-S dithering or no dithering is supported. */ |
1292 |
/* If user asks for ordered dither, give him F-S. */ |
1293 |
if (cinfo->dither_mode != JDITHER_NONE) |
1294 |
cinfo->dither_mode = JDITHER_FS; |
1295 |
|
1296 |
/* Allocate Floyd-Steinberg workspace if necessary. |
1297 |
* This isn't really needed until pass 2, but again it is FAR storage. |
1298 |
* Although we will cope with a later change in dither_mode, |
1299 |
* we do not promise to honor max_memory_to_use if dither_mode changes. |
1300 |
*/ |
1301 |
if (cinfo->dither_mode == JDITHER_FS) { |
1302 |
cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
1303 |
((j_common_ptr) cinfo, JPOOL_IMAGE, |
1304 |
(size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); |
1305 |
/* Might as well create the error-limiting table too. */ |
1306 |
init_error_limit(cinfo); |
1307 |
} |
1308 |
} |
1309 |
|
1310 |
#endif /* QUANT_2PASS_SUPPORTED */ |