1 |
/* |
2 |
* jquant1.c |
3 |
* |
4 |
* Copyright (C) 1991-1996, Thomas G. Lane. |
5 |
* This file is part of the Independent JPEG Group's software. |
6 |
* For conditions of distribution and use, see the accompanying README file. |
7 |
* |
8 |
* This file contains 1-pass color quantization (color mapping) routines. |
9 |
* These routines provide mapping to a fixed color map using equally spaced |
10 |
* color values. Optional Floyd-Steinberg or ordered dithering is available. |
11 |
*/ |
12 |
|
13 |
#define JPEG_INTERNALS |
14 |
#include "jinclude.h" |
15 |
#include "jpeglib.h" |
16 |
|
17 |
#ifdef QUANT_1PASS_SUPPORTED |
18 |
|
19 |
|
20 |
/* |
21 |
* The main purpose of 1-pass quantization is to provide a fast, if not very |
22 |
* high quality, colormapped output capability. A 2-pass quantizer usually |
23 |
* gives better visual quality; however, for quantized grayscale output this |
24 |
* quantizer is perfectly adequate. Dithering is highly recommended with this |
25 |
* quantizer, though you can turn it off if you really want to. |
26 |
* |
27 |
* In 1-pass quantization the colormap must be chosen in advance of seeing the |
28 |
* image. We use a map consisting of all combinations of Ncolors[i] color |
29 |
* values for the i'th component. The Ncolors[] values are chosen so that |
30 |
* their product, the total number of colors, is no more than that requested. |
31 |
* (In most cases, the product will be somewhat less.) |
32 |
* |
33 |
* Since the colormap is orthogonal, the representative value for each color |
34 |
* component can be determined without considering the other components; |
35 |
* then these indexes can be combined into a colormap index by a standard |
36 |
* N-dimensional-array-subscript calculation. Most of the arithmetic involved |
37 |
* can be precalculated and stored in the lookup table colorindex[]. |
38 |
* colorindex[i][j] maps pixel value j in component i to the nearest |
39 |
* representative value (grid plane) for that component; this index is |
40 |
* multiplied by the array stride for component i, so that the |
41 |
* index of the colormap entry closest to a given pixel value is just |
42 |
* sum( colorindex[component-number][pixel-component-value] ) |
43 |
* Aside from being fast, this scheme allows for variable spacing between |
44 |
* representative values with no additional lookup cost. |
45 |
* |
46 |
* If gamma correction has been applied in color conversion, it might be wise |
47 |
* to adjust the color grid spacing so that the representative colors are |
48 |
* equidistant in linear space. At this writing, gamma correction is not |
49 |
* implemented by jdcolor, so nothing is done here. |
50 |
*/ |
51 |
|
52 |
|
53 |
/* Declarations for ordered dithering. |
54 |
* |
55 |
* We use a standard 16x16 ordered dither array. The basic concept of ordered |
56 |
* dithering is described in many references, for instance Dale Schumacher's |
57 |
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). |
58 |
* In place of Schumacher's comparisons against a "threshold" value, we add a |
59 |
* "dither" value to the input pixel and then round the result to the nearest |
60 |
* output value. The dither value is equivalent to (0.5 - threshold) times |
61 |
* the distance between output values. For ordered dithering, we assume that |
62 |
* the output colors are equally spaced; if not, results will probably be |
63 |
* worse, since the dither may be too much or too little at a given point. |
64 |
* |
65 |
* The normal calculation would be to form pixel value + dither, range-limit |
66 |
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. |
67 |
* We can skip the separate range-limiting step by extending the colorindex |
68 |
* table in both directions. |
69 |
*/ |
70 |
|
71 |
#define ODITHER_SIZE 16 /* dimension of dither matrix */ |
72 |
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ |
73 |
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ |
74 |
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ |
75 |
|
76 |
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; |
77 |
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; |
78 |
|
79 |
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { |
80 |
/* Bayer's order-4 dither array. Generated by the code given in |
81 |
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. |
82 |
* The values in this array must range from 0 to ODITHER_CELLS-1. |
83 |
*/ |
84 |
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, |
85 |
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, |
86 |
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, |
87 |
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, |
88 |
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, |
89 |
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, |
90 |
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, |
91 |
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, |
92 |
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, |
93 |
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, |
94 |
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, |
95 |
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, |
96 |
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, |
97 |
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, |
98 |
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, |
99 |
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } |
100 |
}; |
101 |
|
102 |
|
103 |
/* Declarations for Floyd-Steinberg dithering. |
104 |
* |
105 |
* Errors are accumulated into the array fserrors[], at a resolution of |
106 |
* 1/16th of a pixel count. The error at a given pixel is propagated |
107 |
* to its not-yet-processed neighbors using the standard F-S fractions, |
108 |
* ... (here) 7/16 |
109 |
* 3/16 5/16 1/16 |
110 |
* We work left-to-right on even rows, right-to-left on odd rows. |
111 |
* |
112 |
* We can get away with a single array (holding one row's worth of errors) |
113 |
* by using it to store the current row's errors at pixel columns not yet |
114 |
* processed, but the next row's errors at columns already processed. We |
115 |
* need only a few extra variables to hold the errors immediately around the |
116 |
* current column. (If we are lucky, those variables are in registers, but |
117 |
* even if not, they're probably cheaper to access than array elements are.) |
118 |
* |
119 |
* The fserrors[] array is indexed [component#][position]. |
120 |
* We provide (#columns + 2) entries per component; the extra entry at each |
121 |
* end saves us from special-casing the first and last pixels. |
122 |
* |
123 |
* Note: on a wide image, we might not have enough room in a PC's near data |
124 |
* segment to hold the error array; so it is allocated with alloc_large. |
125 |
*/ |
126 |
|
127 |
#if BITS_IN_JSAMPLE == 8 |
128 |
typedef INT16 FSERROR; /* 16 bits should be enough */ |
129 |
typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
130 |
#else |
131 |
typedef INT32 FSERROR; /* may need more than 16 bits */ |
132 |
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
133 |
#endif |
134 |
|
135 |
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
136 |
|
137 |
|
138 |
/* Private subobject */ |
139 |
|
140 |
#define MAX_Q_COMPS 4 /* max components I can handle */ |
141 |
|
142 |
typedef struct { |
143 |
struct jpeg_color_quantizer pub; /* public fields */ |
144 |
|
145 |
/* Initially allocated colormap is saved here */ |
146 |
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ |
147 |
int sv_actual; /* number of entries in use */ |
148 |
|
149 |
JSAMPARRAY colorindex; /* Precomputed mapping for speed */ |
150 |
/* colorindex[i][j] = index of color closest to pixel value j in component i, |
151 |
* premultiplied as described above. Since colormap indexes must fit into |
152 |
* JSAMPLEs, the entries of this array will too. |
153 |
*/ |
154 |
boolean is_padded; /* is the colorindex padded for odither? */ |
155 |
|
156 |
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ |
157 |
|
158 |
/* Variables for ordered dithering */ |
159 |
int row_index; /* cur row's vertical index in dither matrix */ |
160 |
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ |
161 |
|
162 |
/* Variables for Floyd-Steinberg dithering */ |
163 |
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ |
164 |
boolean on_odd_row; /* flag to remember which row we are on */ |
165 |
} my_cquantizer; |
166 |
|
167 |
typedef my_cquantizer * my_cquantize_ptr; |
168 |
|
169 |
|
170 |
/* |
171 |
* Policy-making subroutines for create_colormap and create_colorindex. |
172 |
* These routines determine the colormap to be used. The rest of the module |
173 |
* only assumes that the colormap is orthogonal. |
174 |
* |
175 |
* * select_ncolors decides how to divvy up the available colors |
176 |
* among the components. |
177 |
* * output_value defines the set of representative values for a component. |
178 |
* * largest_input_value defines the mapping from input values to |
179 |
* representative values for a component. |
180 |
* Note that the latter two routines may impose different policies for |
181 |
* different components, though this is not currently done. |
182 |
*/ |
183 |
|
184 |
|
185 |
LOCAL(int) |
186 |
select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) |
187 |
/* Determine allocation of desired colors to components, */ |
188 |
/* and fill in Ncolors[] array to indicate choice. */ |
189 |
/* Return value is total number of colors (product of Ncolors[] values). */ |
190 |
{ |
191 |
int nc = cinfo->out_color_components; /* number of color components */ |
192 |
int max_colors = cinfo->desired_number_of_colors; |
193 |
int total_colors, iroot, i, j; |
194 |
boolean changed; |
195 |
long temp; |
196 |
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; |
197 |
|
198 |
/* We can allocate at least the nc'th root of max_colors per component. */ |
199 |
/* Compute floor(nc'th root of max_colors). */ |
200 |
iroot = 1; |
201 |
do { |
202 |
iroot++; |
203 |
temp = iroot; /* set temp = iroot ** nc */ |
204 |
for (i = 1; i < nc; i++) |
205 |
temp *= iroot; |
206 |
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ |
207 |
iroot--; /* now iroot = floor(root) */ |
208 |
|
209 |
/* Must have at least 2 color values per component */ |
210 |
if (iroot < 2) |
211 |
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); |
212 |
|
213 |
/* Initialize to iroot color values for each component */ |
214 |
total_colors = 1; |
215 |
for (i = 0; i < nc; i++) { |
216 |
Ncolors[i] = iroot; |
217 |
total_colors *= iroot; |
218 |
} |
219 |
/* We may be able to increment the count for one or more components without |
220 |
* exceeding max_colors, though we know not all can be incremented. |
221 |
* Sometimes, the first component can be incremented more than once! |
222 |
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) |
223 |
* In RGB colorspace, try to increment G first, then R, then B. |
224 |
*/ |
225 |
do { |
226 |
changed = FALSE; |
227 |
for (i = 0; i < nc; i++) { |
228 |
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); |
229 |
/* calculate new total_colors if Ncolors[j] is incremented */ |
230 |
temp = total_colors / Ncolors[j]; |
231 |
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ |
232 |
if (temp > (long) max_colors) |
233 |
break; /* won't fit, done with this pass */ |
234 |
Ncolors[j]++; /* OK, apply the increment */ |
235 |
total_colors = (int) temp; |
236 |
changed = TRUE; |
237 |
} |
238 |
} while (changed); |
239 |
|
240 |
return total_colors; |
241 |
} |
242 |
|
243 |
|
244 |
LOCAL(int) |
245 |
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
246 |
/* Return j'th output value, where j will range from 0 to maxj */ |
247 |
/* The output values must fall in 0..MAXJSAMPLE in increasing order */ |
248 |
{ |
249 |
/* We always provide values 0 and MAXJSAMPLE for each component; |
250 |
* any additional values are equally spaced between these limits. |
251 |
* (Forcing the upper and lower values to the limits ensures that |
252 |
* dithering can't produce a color outside the selected gamut.) |
253 |
*/ |
254 |
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); |
255 |
} |
256 |
|
257 |
|
258 |
LOCAL(int) |
259 |
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
260 |
/* Return largest input value that should map to j'th output value */ |
261 |
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ |
262 |
{ |
263 |
/* Breakpoints are halfway between values returned by output_value */ |
264 |
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); |
265 |
} |
266 |
|
267 |
|
268 |
/* |
269 |
* Create the colormap. |
270 |
*/ |
271 |
|
272 |
LOCAL(void) |
273 |
create_colormap (j_decompress_ptr cinfo) |
274 |
{ |
275 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
276 |
JSAMPARRAY colormap; /* Created colormap */ |
277 |
int total_colors; /* Number of distinct output colors */ |
278 |
int i,j,k, nci, blksize, blkdist, ptr, val; |
279 |
|
280 |
/* Select number of colors for each component */ |
281 |
total_colors = select_ncolors(cinfo, cquantize->Ncolors); |
282 |
|
283 |
/* Report selected color counts */ |
284 |
if (cinfo->out_color_components == 3) |
285 |
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, |
286 |
total_colors, cquantize->Ncolors[0], |
287 |
cquantize->Ncolors[1], cquantize->Ncolors[2]); |
288 |
else |
289 |
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); |
290 |
|
291 |
/* Allocate and fill in the colormap. */ |
292 |
/* The colors are ordered in the map in standard row-major order, */ |
293 |
/* i.e. rightmost (highest-indexed) color changes most rapidly. */ |
294 |
|
295 |
colormap = (*cinfo->mem->alloc_sarray) |
296 |
((j_common_ptr) cinfo, JPOOL_IMAGE, |
297 |
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); |
298 |
|
299 |
/* blksize is number of adjacent repeated entries for a component */ |
300 |
/* blkdist is distance between groups of identical entries for a component */ |
301 |
blkdist = total_colors; |
302 |
|
303 |
for (i = 0; i < cinfo->out_color_components; i++) { |
304 |
/* fill in colormap entries for i'th color component */ |
305 |
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
306 |
blksize = blkdist / nci; |
307 |
for (j = 0; j < nci; j++) { |
308 |
/* Compute j'th output value (out of nci) for component */ |
309 |
val = output_value(cinfo, i, j, nci-1); |
310 |
/* Fill in all colormap entries that have this value of this component */ |
311 |
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { |
312 |
/* fill in blksize entries beginning at ptr */ |
313 |
for (k = 0; k < blksize; k++) |
314 |
colormap[i][ptr+k] = (JSAMPLE) val; |
315 |
} |
316 |
} |
317 |
blkdist = blksize; /* blksize of this color is blkdist of next */ |
318 |
} |
319 |
|
320 |
/* Save the colormap in private storage, |
321 |
* where it will survive color quantization mode changes. |
322 |
*/ |
323 |
cquantize->sv_colormap = colormap; |
324 |
cquantize->sv_actual = total_colors; |
325 |
} |
326 |
|
327 |
|
328 |
/* |
329 |
* Create the color index table. |
330 |
*/ |
331 |
|
332 |
LOCAL(void) |
333 |
create_colorindex (j_decompress_ptr cinfo) |
334 |
{ |
335 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
336 |
JSAMPROW indexptr; |
337 |
int i,j,k, nci, blksize, val, pad; |
338 |
|
339 |
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in |
340 |
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). |
341 |
* This is not necessary in the other dithering modes. However, we |
342 |
* flag whether it was done in case user changes dithering mode. |
343 |
*/ |
344 |
if (cinfo->dither_mode == JDITHER_ORDERED) { |
345 |
pad = MAXJSAMPLE*2; |
346 |
cquantize->is_padded = TRUE; |
347 |
} else { |
348 |
pad = 0; |
349 |
cquantize->is_padded = FALSE; |
350 |
} |
351 |
|
352 |
cquantize->colorindex = (*cinfo->mem->alloc_sarray) |
353 |
((j_common_ptr) cinfo, JPOOL_IMAGE, |
354 |
(JDIMENSION) (MAXJSAMPLE+1 + pad), |
355 |
(JDIMENSION) cinfo->out_color_components); |
356 |
|
357 |
/* blksize is number of adjacent repeated entries for a component */ |
358 |
blksize = cquantize->sv_actual; |
359 |
|
360 |
for (i = 0; i < cinfo->out_color_components; i++) { |
361 |
/* fill in colorindex entries for i'th color component */ |
362 |
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
363 |
blksize = blksize / nci; |
364 |
|
365 |
/* adjust colorindex pointers to provide padding at negative indexes. */ |
366 |
if (pad) |
367 |
cquantize->colorindex[i] += MAXJSAMPLE; |
368 |
|
369 |
/* in loop, val = index of current output value, */ |
370 |
/* and k = largest j that maps to current val */ |
371 |
indexptr = cquantize->colorindex[i]; |
372 |
val = 0; |
373 |
k = largest_input_value(cinfo, i, 0, nci-1); |
374 |
for (j = 0; j <= MAXJSAMPLE; j++) { |
375 |
while (j > k) /* advance val if past boundary */ |
376 |
k = largest_input_value(cinfo, i, ++val, nci-1); |
377 |
/* premultiply so that no multiplication needed in main processing */ |
378 |
indexptr[j] = (JSAMPLE) (val * blksize); |
379 |
} |
380 |
/* Pad at both ends if necessary */ |
381 |
if (pad) |
382 |
for (j = 1; j <= MAXJSAMPLE; j++) { |
383 |
indexptr[-j] = indexptr[0]; |
384 |
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; |
385 |
} |
386 |
} |
387 |
} |
388 |
|
389 |
|
390 |
/* |
391 |
* Create an ordered-dither array for a component having ncolors |
392 |
* distinct output values. |
393 |
*/ |
394 |
|
395 |
LOCAL(ODITHER_MATRIX_PTR) |
396 |
make_odither_array (j_decompress_ptr cinfo, int ncolors) |
397 |
{ |
398 |
ODITHER_MATRIX_PTR odither; |
399 |
int j,k; |
400 |
INT32 num,den; |
401 |
|
402 |
odither = (ODITHER_MATRIX_PTR) |
403 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
404 |
SIZEOF(ODITHER_MATRIX)); |
405 |
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). |
406 |
* Hence the dither value for the matrix cell with fill order f |
407 |
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). |
408 |
* On 16-bit-int machine, be careful to avoid overflow. |
409 |
*/ |
410 |
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); |
411 |
for (j = 0; j < ODITHER_SIZE; j++) { |
412 |
for (k = 0; k < ODITHER_SIZE; k++) { |
413 |
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) |
414 |
* MAXJSAMPLE; |
415 |
/* Ensure round towards zero despite C's lack of consistency |
416 |
* about rounding negative values in integer division... |
417 |
*/ |
418 |
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); |
419 |
} |
420 |
} |
421 |
return odither; |
422 |
} |
423 |
|
424 |
|
425 |
/* |
426 |
* Create the ordered-dither tables. |
427 |
* Components having the same number of representative colors may |
428 |
* share a dither table. |
429 |
*/ |
430 |
|
431 |
LOCAL(void) |
432 |
create_odither_tables (j_decompress_ptr cinfo) |
433 |
{ |
434 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
435 |
ODITHER_MATRIX_PTR odither; |
436 |
int i, j, nci; |
437 |
|
438 |
for (i = 0; i < cinfo->out_color_components; i++) { |
439 |
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
440 |
odither = NULL; /* search for matching prior component */ |
441 |
for (j = 0; j < i; j++) { |
442 |
if (nci == cquantize->Ncolors[j]) { |
443 |
odither = cquantize->odither[j]; |
444 |
break; |
445 |
} |
446 |
} |
447 |
if (odither == NULL) /* need a new table? */ |
448 |
odither = make_odither_array(cinfo, nci); |
449 |
cquantize->odither[i] = odither; |
450 |
} |
451 |
} |
452 |
|
453 |
|
454 |
/* |
455 |
* Map some rows of pixels to the output colormapped representation. |
456 |
*/ |
457 |
|
458 |
METHODDEF(void) |
459 |
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
460 |
JSAMPARRAY output_buf, int num_rows) |
461 |
/* General case, no dithering */ |
462 |
{ |
463 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
464 |
JSAMPARRAY colorindex = cquantize->colorindex; |
465 |
register int pixcode, ci; |
466 |
register JSAMPROW ptrin, ptrout; |
467 |
int row; |
468 |
JDIMENSION col; |
469 |
JDIMENSION width = cinfo->output_width; |
470 |
register int nc = cinfo->out_color_components; |
471 |
|
472 |
for (row = 0; row < num_rows; row++) { |
473 |
ptrin = input_buf[row]; |
474 |
ptrout = output_buf[row]; |
475 |
for (col = width; col > 0; col--) { |
476 |
pixcode = 0; |
477 |
for (ci = 0; ci < nc; ci++) { |
478 |
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); |
479 |
} |
480 |
*ptrout++ = (JSAMPLE) pixcode; |
481 |
} |
482 |
} |
483 |
} |
484 |
|
485 |
|
486 |
METHODDEF(void) |
487 |
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
488 |
JSAMPARRAY output_buf, int num_rows) |
489 |
/* Fast path for out_color_components==3, no dithering */ |
490 |
{ |
491 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
492 |
register int pixcode; |
493 |
register JSAMPROW ptrin, ptrout; |
494 |
JSAMPROW colorindex0 = cquantize->colorindex[0]; |
495 |
JSAMPROW colorindex1 = cquantize->colorindex[1]; |
496 |
JSAMPROW colorindex2 = cquantize->colorindex[2]; |
497 |
int row; |
498 |
JDIMENSION col; |
499 |
JDIMENSION width = cinfo->output_width; |
500 |
|
501 |
for (row = 0; row < num_rows; row++) { |
502 |
ptrin = input_buf[row]; |
503 |
ptrout = output_buf[row]; |
504 |
for (col = width; col > 0; col--) { |
505 |
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); |
506 |
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); |
507 |
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); |
508 |
*ptrout++ = (JSAMPLE) pixcode; |
509 |
} |
510 |
} |
511 |
} |
512 |
|
513 |
|
514 |
METHODDEF(void) |
515 |
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
516 |
JSAMPARRAY output_buf, int num_rows) |
517 |
/* General case, with ordered dithering */ |
518 |
{ |
519 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
520 |
register JSAMPROW input_ptr; |
521 |
register JSAMPROW output_ptr; |
522 |
JSAMPROW colorindex_ci; |
523 |
int * dither; /* points to active row of dither matrix */ |
524 |
int row_index, col_index; /* current indexes into dither matrix */ |
525 |
int nc = cinfo->out_color_components; |
526 |
int ci; |
527 |
int row; |
528 |
JDIMENSION col; |
529 |
JDIMENSION width = cinfo->output_width; |
530 |
|
531 |
for (row = 0; row < num_rows; row++) { |
532 |
/* Initialize output values to 0 so can process components separately */ |
533 |
jzero_far((void FAR *) output_buf[row], |
534 |
(size_t) (width * SIZEOF(JSAMPLE))); |
535 |
row_index = cquantize->row_index; |
536 |
for (ci = 0; ci < nc; ci++) { |
537 |
input_ptr = input_buf[row] + ci; |
538 |
output_ptr = output_buf[row]; |
539 |
colorindex_ci = cquantize->colorindex[ci]; |
540 |
dither = cquantize->odither[ci][row_index]; |
541 |
col_index = 0; |
542 |
|
543 |
for (col = width; col > 0; col--) { |
544 |
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, |
545 |
* select output value, accumulate into output code for this pixel. |
546 |
* Range-limiting need not be done explicitly, as we have extended |
547 |
* the colorindex table to produce the right answers for out-of-range |
548 |
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the |
549 |
* required amount of padding. |
550 |
*/ |
551 |
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; |
552 |
input_ptr += nc; |
553 |
output_ptr++; |
554 |
col_index = (col_index + 1) & ODITHER_MASK; |
555 |
} |
556 |
} |
557 |
/* Advance row index for next row */ |
558 |
row_index = (row_index + 1) & ODITHER_MASK; |
559 |
cquantize->row_index = row_index; |
560 |
} |
561 |
} |
562 |
|
563 |
|
564 |
METHODDEF(void) |
565 |
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
566 |
JSAMPARRAY output_buf, int num_rows) |
567 |
/* Fast path for out_color_components==3, with ordered dithering */ |
568 |
{ |
569 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
570 |
register int pixcode; |
571 |
register JSAMPROW input_ptr; |
572 |
register JSAMPROW output_ptr; |
573 |
JSAMPROW colorindex0 = cquantize->colorindex[0]; |
574 |
JSAMPROW colorindex1 = cquantize->colorindex[1]; |
575 |
JSAMPROW colorindex2 = cquantize->colorindex[2]; |
576 |
int * dither0; /* points to active row of dither matrix */ |
577 |
int * dither1; |
578 |
int * dither2; |
579 |
int row_index, col_index; /* current indexes into dither matrix */ |
580 |
int row; |
581 |
JDIMENSION col; |
582 |
JDIMENSION width = cinfo->output_width; |
583 |
|
584 |
for (row = 0; row < num_rows; row++) { |
585 |
row_index = cquantize->row_index; |
586 |
input_ptr = input_buf[row]; |
587 |
output_ptr = output_buf[row]; |
588 |
dither0 = cquantize->odither[0][row_index]; |
589 |
dither1 = cquantize->odither[1][row_index]; |
590 |
dither2 = cquantize->odither[2][row_index]; |
591 |
col_index = 0; |
592 |
|
593 |
for (col = width; col > 0; col--) { |
594 |
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + |
595 |
dither0[col_index]]); |
596 |
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + |
597 |
dither1[col_index]]); |
598 |
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + |
599 |
dither2[col_index]]); |
600 |
*output_ptr++ = (JSAMPLE) pixcode; |
601 |
col_index = (col_index + 1) & ODITHER_MASK; |
602 |
} |
603 |
row_index = (row_index + 1) & ODITHER_MASK; |
604 |
cquantize->row_index = row_index; |
605 |
} |
606 |
} |
607 |
|
608 |
|
609 |
METHODDEF(void) |
610 |
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
611 |
JSAMPARRAY output_buf, int num_rows) |
612 |
/* General case, with Floyd-Steinberg dithering */ |
613 |
{ |
614 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
615 |
register LOCFSERROR cur; /* current error or pixel value */ |
616 |
LOCFSERROR belowerr; /* error for pixel below cur */ |
617 |
LOCFSERROR bpreverr; /* error for below/prev col */ |
618 |
LOCFSERROR bnexterr; /* error for below/next col */ |
619 |
LOCFSERROR delta; |
620 |
register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
621 |
register JSAMPROW input_ptr; |
622 |
register JSAMPROW output_ptr; |
623 |
JSAMPROW colorindex_ci; |
624 |
JSAMPROW colormap_ci; |
625 |
int pixcode; |
626 |
int nc = cinfo->out_color_components; |
627 |
int dir; /* 1 for left-to-right, -1 for right-to-left */ |
628 |
int dirnc; /* dir * nc */ |
629 |
int ci; |
630 |
int row; |
631 |
JDIMENSION col; |
632 |
JDIMENSION width = cinfo->output_width; |
633 |
JSAMPLE *range_limit = cinfo->sample_range_limit; |
634 |
SHIFT_TEMPS |
635 |
|
636 |
for (row = 0; row < num_rows; row++) { |
637 |
/* Initialize output values to 0 so can process components separately */ |
638 |
jzero_far((void FAR *) output_buf[row], |
639 |
(size_t) (width * SIZEOF(JSAMPLE))); |
640 |
for (ci = 0; ci < nc; ci++) { |
641 |
input_ptr = input_buf[row] + ci; |
642 |
output_ptr = output_buf[row]; |
643 |
if (cquantize->on_odd_row) { |
644 |
/* work right to left in this row */ |
645 |
input_ptr += (width-1) * nc; /* so point to rightmost pixel */ |
646 |
output_ptr += width-1; |
647 |
dir = -1; |
648 |
dirnc = -nc; |
649 |
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ |
650 |
} else { |
651 |
/* work left to right in this row */ |
652 |
dir = 1; |
653 |
dirnc = nc; |
654 |
errorptr = cquantize->fserrors[ci]; /* => entry before first column */ |
655 |
} |
656 |
colorindex_ci = cquantize->colorindex[ci]; |
657 |
colormap_ci = cquantize->sv_colormap[ci]; |
658 |
/* Preset error values: no error propagated to first pixel from left */ |
659 |
cur = 0; |
660 |
/* and no error propagated to row below yet */ |
661 |
belowerr = bpreverr = 0; |
662 |
|
663 |
for (col = width; col > 0; col--) { |
664 |
/* cur holds the error propagated from the previous pixel on the |
665 |
* current line. Add the error propagated from the previous line |
666 |
* to form the complete error correction term for this pixel, and |
667 |
* round the error term (which is expressed * 16) to an integer. |
668 |
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
669 |
* for either sign of the error value. |
670 |
* Note: errorptr points to *previous* column's array entry. |
671 |
*/ |
672 |
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); |
673 |
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
674 |
* The maximum error is +- MAXJSAMPLE; this sets the required size |
675 |
* of the range_limit array. |
676 |
*/ |
677 |
cur += GETJSAMPLE(*input_ptr); |
678 |
cur = GETJSAMPLE(range_limit[cur]); |
679 |
/* Select output value, accumulate into output code for this pixel */ |
680 |
pixcode = GETJSAMPLE(colorindex_ci[cur]); |
681 |
*output_ptr += (JSAMPLE) pixcode; |
682 |
/* Compute actual representation error at this pixel */ |
683 |
/* Note: we can do this even though we don't have the final */ |
684 |
/* pixel code, because the colormap is orthogonal. */ |
685 |
cur -= GETJSAMPLE(colormap_ci[pixcode]); |
686 |
/* Compute error fractions to be propagated to adjacent pixels. |
687 |
* Add these into the running sums, and simultaneously shift the |
688 |
* next-line error sums left by 1 column. |
689 |
*/ |
690 |
bnexterr = cur; |
691 |
delta = cur * 2; |
692 |
cur += delta; /* form error * 3 */ |
693 |
errorptr[0] = (FSERROR) (bpreverr + cur); |
694 |
cur += delta; /* form error * 5 */ |
695 |
bpreverr = belowerr + cur; |
696 |
belowerr = bnexterr; |
697 |
cur += delta; /* form error * 7 */ |
698 |
/* At this point cur contains the 7/16 error value to be propagated |
699 |
* to the next pixel on the current line, and all the errors for the |
700 |
* next line have been shifted over. We are therefore ready to move on. |
701 |
*/ |
702 |
input_ptr += dirnc; /* advance input ptr to next column */ |
703 |
output_ptr += dir; /* advance output ptr to next column */ |
704 |
errorptr += dir; /* advance errorptr to current column */ |
705 |
} |
706 |
/* Post-loop cleanup: we must unload the final error value into the |
707 |
* final fserrors[] entry. Note we need not unload belowerr because |
708 |
* it is for the dummy column before or after the actual array. |
709 |
*/ |
710 |
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ |
711 |
} |
712 |
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); |
713 |
} |
714 |
} |
715 |
|
716 |
|
717 |
/* |
718 |
* Allocate workspace for Floyd-Steinberg errors. |
719 |
*/ |
720 |
|
721 |
LOCAL(void) |
722 |
alloc_fs_workspace (j_decompress_ptr cinfo) |
723 |
{ |
724 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
725 |
size_t arraysize; |
726 |
int i; |
727 |
|
728 |
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
729 |
for (i = 0; i < cinfo->out_color_components; i++) { |
730 |
cquantize->fserrors[i] = (FSERRPTR) |
731 |
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
732 |
} |
733 |
} |
734 |
|
735 |
|
736 |
/* |
737 |
* Initialize for one-pass color quantization. |
738 |
*/ |
739 |
|
740 |
METHODDEF(void) |
741 |
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
742 |
{ |
743 |
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
744 |
size_t arraysize; |
745 |
int i; |
746 |
|
747 |
/* Install my colormap. */ |
748 |
cinfo->colormap = cquantize->sv_colormap; |
749 |
cinfo->actual_number_of_colors = cquantize->sv_actual; |
750 |
|
751 |
/* Initialize for desired dithering mode. */ |
752 |
switch (cinfo->dither_mode) { |
753 |
case JDITHER_NONE: |
754 |
if (cinfo->out_color_components == 3) |
755 |
cquantize->pub.color_quantize = color_quantize3; |
756 |
else |
757 |
cquantize->pub.color_quantize = color_quantize; |
758 |
break; |
759 |
case JDITHER_ORDERED: |
760 |
if (cinfo->out_color_components == 3) |
761 |
cquantize->pub.color_quantize = quantize3_ord_dither; |
762 |
else |
763 |
cquantize->pub.color_quantize = quantize_ord_dither; |
764 |
cquantize->row_index = 0; /* initialize state for ordered dither */ |
765 |
/* If user changed to ordered dither from another mode, |
766 |
* we must recreate the color index table with padding. |
767 |
* This will cost extra space, but probably isn't very likely. |
768 |
*/ |
769 |
if (! cquantize->is_padded) |
770 |
create_colorindex(cinfo); |
771 |
/* Create ordered-dither tables if we didn't already. */ |
772 |
if (cquantize->odither[0] == NULL) |
773 |
create_odither_tables(cinfo); |
774 |
break; |
775 |
case JDITHER_FS: |
776 |
cquantize->pub.color_quantize = quantize_fs_dither; |
777 |
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ |
778 |
/* Allocate Floyd-Steinberg workspace if didn't already. */ |
779 |
if (cquantize->fserrors[0] == NULL) |
780 |
alloc_fs_workspace(cinfo); |
781 |
/* Initialize the propagated errors to zero. */ |
782 |
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
783 |
for (i = 0; i < cinfo->out_color_components; i++) |
784 |
jzero_far((void FAR *) cquantize->fserrors[i], arraysize); |
785 |
break; |
786 |
default: |
787 |
ERREXIT(cinfo, JERR_NOT_COMPILED); |
788 |
break; |
789 |
} |
790 |
} |
791 |
|
792 |
|
793 |
/* |
794 |
* Finish up at the end of the pass. |
795 |
*/ |
796 |
|
797 |
METHODDEF(void) |
798 |
finish_pass_1_quant (j_decompress_ptr cinfo) |
799 |
{ |
800 |
/* no work in 1-pass case */ |
801 |
} |
802 |
|
803 |
|
804 |
/* |
805 |
* Switch to a new external colormap between output passes. |
806 |
* Shouldn't get to this module! |
807 |
*/ |
808 |
|
809 |
METHODDEF(void) |
810 |
new_color_map_1_quant (j_decompress_ptr cinfo) |
811 |
{ |
812 |
ERREXIT(cinfo, JERR_MODE_CHANGE); |
813 |
} |
814 |
|
815 |
|
816 |
/* |
817 |
* Module initialization routine for 1-pass color quantization. |
818 |
*/ |
819 |
|
820 |
GLOBAL(void) |
821 |
jinit_1pass_quantizer (j_decompress_ptr cinfo) |
822 |
{ |
823 |
my_cquantize_ptr cquantize; |
824 |
|
825 |
cquantize = (my_cquantize_ptr) |
826 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
827 |
SIZEOF(my_cquantizer)); |
828 |
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
829 |
cquantize->pub.start_pass = start_pass_1_quant; |
830 |
cquantize->pub.finish_pass = finish_pass_1_quant; |
831 |
cquantize->pub.new_color_map = new_color_map_1_quant; |
832 |
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ |
833 |
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ |
834 |
|
835 |
/* Make sure my internal arrays won't overflow */ |
836 |
if (cinfo->out_color_components > MAX_Q_COMPS) |
837 |
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); |
838 |
/* Make sure colormap indexes can be represented by JSAMPLEs */ |
839 |
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) |
840 |
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); |
841 |
|
842 |
/* Create the colormap and color index table. */ |
843 |
create_colormap(cinfo); |
844 |
create_colorindex(cinfo); |
845 |
|
846 |
/* Allocate Floyd-Steinberg workspace now if requested. |
847 |
* We do this now since it is FAR storage and may affect the memory |
848 |
* manager's space calculations. If the user changes to FS dither |
849 |
* mode in a later pass, we will allocate the space then, and will |
850 |
* possibly overrun the max_memory_to_use setting. |
851 |
*/ |
852 |
if (cinfo->dither_mode == JDITHER_FS) |
853 |
alloc_fs_workspace(cinfo); |
854 |
} |
855 |
|
856 |
#endif /* QUANT_1PASS_SUPPORTED */ |