1 |
/* |
2 |
* jidctflt.c |
3 |
* |
4 |
* Copyright (C) 1994-1998, Thomas G. Lane. |
5 |
* This file is part of the Independent JPEG Group's software. |
6 |
* For conditions of distribution and use, see the accompanying README file. |
7 |
* |
8 |
* This file contains a floating-point implementation of the |
9 |
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
10 |
* must also perform dequantization of the input coefficients. |
11 |
* |
12 |
* This implementation should be more accurate than either of the integer |
13 |
* IDCT implementations. However, it may not give the same results on all |
14 |
* machines because of differences in roundoff behavior. Speed will depend |
15 |
* on the hardware's floating point capacity. |
16 |
* |
17 |
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
18 |
* on each row (or vice versa, but it's more convenient to emit a row at |
19 |
* a time). Direct algorithms are also available, but they are much more |
20 |
* complex and seem not to be any faster when reduced to code. |
21 |
* |
22 |
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
23 |
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
24 |
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
25 |
* JPEG textbook (see REFERENCES section in file README). The following code |
26 |
* is based directly on figure 4-8 in P&M. |
27 |
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
28 |
* possible to arrange the computation so that many of the multiplies are |
29 |
* simple scalings of the final outputs. These multiplies can then be |
30 |
* folded into the multiplications or divisions by the JPEG quantization |
31 |
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
32 |
* to be done in the DCT itself. |
33 |
* The primary disadvantage of this method is that with a fixed-point |
34 |
* implementation, accuracy is lost due to imprecise representation of the |
35 |
* scaled quantization values. However, that problem does not arise if |
36 |
* we use floating point arithmetic. |
37 |
*/ |
38 |
|
39 |
#define JPEG_INTERNALS |
40 |
#include "jinclude.h" |
41 |
#include "jpeglib.h" |
42 |
#include "jdct.h" /* Private declarations for DCT subsystem */ |
43 |
|
44 |
#ifdef DCT_FLOAT_SUPPORTED |
45 |
|
46 |
|
47 |
/* |
48 |
* This module is specialized to the case DCTSIZE = 8. |
49 |
*/ |
50 |
|
51 |
#if DCTSIZE != 8 |
52 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
53 |
#endif |
54 |
|
55 |
|
56 |
/* Dequantize a coefficient by multiplying it by the multiplier-table |
57 |
* entry; produce a float result. |
58 |
*/ |
59 |
|
60 |
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) |
61 |
|
62 |
|
63 |
/* |
64 |
* Perform dequantization and inverse DCT on one block of coefficients. |
65 |
*/ |
66 |
|
67 |
GLOBAL(void) |
68 |
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
69 |
JCOEFPTR coef_block, |
70 |
JSAMPARRAY output_buf, JDIMENSION output_col) |
71 |
{ |
72 |
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
73 |
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
74 |
FAST_FLOAT z5, z10, z11, z12, z13; |
75 |
JCOEFPTR inptr; |
76 |
FLOAT_MULT_TYPE * quantptr; |
77 |
FAST_FLOAT * wsptr; |
78 |
JSAMPROW outptr; |
79 |
JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
80 |
int ctr; |
81 |
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
82 |
SHIFT_TEMPS |
83 |
|
84 |
/* Pass 1: process columns from input, store into work array. */ |
85 |
|
86 |
inptr = coef_block; |
87 |
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; |
88 |
wsptr = workspace; |
89 |
for (ctr = DCTSIZE; ctr > 0; ctr--) { |
90 |
/* Due to quantization, we will usually find that many of the input |
91 |
* coefficients are zero, especially the AC terms. We can exploit this |
92 |
* by short-circuiting the IDCT calculation for any column in which all |
93 |
* the AC terms are zero. In that case each output is equal to the |
94 |
* DC coefficient (with scale factor as needed). |
95 |
* With typical images and quantization tables, half or more of the |
96 |
* column DCT calculations can be simplified this way. |
97 |
*/ |
98 |
|
99 |
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
100 |
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
101 |
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
102 |
inptr[DCTSIZE*7] == 0) { |
103 |
/* AC terms all zero */ |
104 |
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
105 |
|
106 |
wsptr[DCTSIZE*0] = dcval; |
107 |
wsptr[DCTSIZE*1] = dcval; |
108 |
wsptr[DCTSIZE*2] = dcval; |
109 |
wsptr[DCTSIZE*3] = dcval; |
110 |
wsptr[DCTSIZE*4] = dcval; |
111 |
wsptr[DCTSIZE*5] = dcval; |
112 |
wsptr[DCTSIZE*6] = dcval; |
113 |
wsptr[DCTSIZE*7] = dcval; |
114 |
|
115 |
inptr++; /* advance pointers to next column */ |
116 |
quantptr++; |
117 |
wsptr++; |
118 |
continue; |
119 |
} |
120 |
|
121 |
/* Even part */ |
122 |
|
123 |
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
124 |
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
125 |
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
126 |
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
127 |
|
128 |
tmp10 = tmp0 + tmp2; /* phase 3 */ |
129 |
tmp11 = tmp0 - tmp2; |
130 |
|
131 |
tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
132 |
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
133 |
|
134 |
tmp0 = tmp10 + tmp13; /* phase 2 */ |
135 |
tmp3 = tmp10 - tmp13; |
136 |
tmp1 = tmp11 + tmp12; |
137 |
tmp2 = tmp11 - tmp12; |
138 |
|
139 |
/* Odd part */ |
140 |
|
141 |
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
142 |
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
143 |
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
144 |
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
145 |
|
146 |
z13 = tmp6 + tmp5; /* phase 6 */ |
147 |
z10 = tmp6 - tmp5; |
148 |
z11 = tmp4 + tmp7; |
149 |
z12 = tmp4 - tmp7; |
150 |
|
151 |
tmp7 = z11 + z13; /* phase 5 */ |
152 |
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
153 |
|
154 |
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
155 |
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
156 |
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
157 |
|
158 |
tmp6 = tmp12 - tmp7; /* phase 2 */ |
159 |
tmp5 = tmp11 - tmp6; |
160 |
tmp4 = tmp10 + tmp5; |
161 |
|
162 |
wsptr[DCTSIZE*0] = tmp0 + tmp7; |
163 |
wsptr[DCTSIZE*7] = tmp0 - tmp7; |
164 |
wsptr[DCTSIZE*1] = tmp1 + tmp6; |
165 |
wsptr[DCTSIZE*6] = tmp1 - tmp6; |
166 |
wsptr[DCTSIZE*2] = tmp2 + tmp5; |
167 |
wsptr[DCTSIZE*5] = tmp2 - tmp5; |
168 |
wsptr[DCTSIZE*4] = tmp3 + tmp4; |
169 |
wsptr[DCTSIZE*3] = tmp3 - tmp4; |
170 |
|
171 |
inptr++; /* advance pointers to next column */ |
172 |
quantptr++; |
173 |
wsptr++; |
174 |
} |
175 |
|
176 |
/* Pass 2: process rows from work array, store into output array. */ |
177 |
/* Note that we must descale the results by a factor of 8 == 2**3. */ |
178 |
|
179 |
wsptr = workspace; |
180 |
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
181 |
outptr = output_buf[ctr] + output_col; |
182 |
/* Rows of zeroes can be exploited in the same way as we did with columns. |
183 |
* However, the column calculation has created many nonzero AC terms, so |
184 |
* the simplification applies less often (typically 5% to 10% of the time). |
185 |
* And testing floats for zero is relatively expensive, so we don't bother. |
186 |
*/ |
187 |
|
188 |
/* Even part */ |
189 |
|
190 |
tmp10 = wsptr[0] + wsptr[4]; |
191 |
tmp11 = wsptr[0] - wsptr[4]; |
192 |
|
193 |
tmp13 = wsptr[2] + wsptr[6]; |
194 |
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; |
195 |
|
196 |
tmp0 = tmp10 + tmp13; |
197 |
tmp3 = tmp10 - tmp13; |
198 |
tmp1 = tmp11 + tmp12; |
199 |
tmp2 = tmp11 - tmp12; |
200 |
|
201 |
/* Odd part */ |
202 |
|
203 |
z13 = wsptr[5] + wsptr[3]; |
204 |
z10 = wsptr[5] - wsptr[3]; |
205 |
z11 = wsptr[1] + wsptr[7]; |
206 |
z12 = wsptr[1] - wsptr[7]; |
207 |
|
208 |
tmp7 = z11 + z13; |
209 |
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); |
210 |
|
211 |
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
212 |
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
213 |
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
214 |
|
215 |
tmp6 = tmp12 - tmp7; |
216 |
tmp5 = tmp11 - tmp6; |
217 |
tmp4 = tmp10 + tmp5; |
218 |
|
219 |
/* Final output stage: scale down by a factor of 8 and range-limit */ |
220 |
|
221 |
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) |
222 |
& RANGE_MASK]; |
223 |
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) |
224 |
& RANGE_MASK]; |
225 |
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) |
226 |
& RANGE_MASK]; |
227 |
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) |
228 |
& RANGE_MASK]; |
229 |
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) |
230 |
& RANGE_MASK]; |
231 |
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) |
232 |
& RANGE_MASK]; |
233 |
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) |
234 |
& RANGE_MASK]; |
235 |
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) |
236 |
& RANGE_MASK]; |
237 |
|
238 |
wsptr += DCTSIZE; /* advance pointer to next row */ |
239 |
} |
240 |
} |
241 |
|
242 |
#endif /* DCT_FLOAT_SUPPORTED */ |