1 |
/* |
2 |
* jfdctint.c |
3 |
* |
4 |
* Copyright (C) 1991-1996, Thomas G. Lane. |
5 |
* Modification developed 2003-2009 by Guido Vollbeding. |
6 |
* This file is part of the Independent JPEG Group's software. |
7 |
* For conditions of distribution and use, see the accompanying README file. |
8 |
* |
9 |
* This file contains a slow-but-accurate integer implementation of the |
10 |
* forward DCT (Discrete Cosine Transform). |
11 |
* |
12 |
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
13 |
* on each column. Direct algorithms are also available, but they are |
14 |
* much more complex and seem not to be any faster when reduced to code. |
15 |
* |
16 |
* This implementation is based on an algorithm described in |
17 |
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
18 |
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
19 |
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
20 |
* The primary algorithm described there uses 11 multiplies and 29 adds. |
21 |
* We use their alternate method with 12 multiplies and 32 adds. |
22 |
* The advantage of this method is that no data path contains more than one |
23 |
* multiplication; this allows a very simple and accurate implementation in |
24 |
* scaled fixed-point arithmetic, with a minimal number of shifts. |
25 |
* |
26 |
* We also provide FDCT routines with various input sample block sizes for |
27 |
* direct resolution reduction or enlargement and for direct resolving the |
28 |
* common 2x1 and 1x2 subsampling cases without additional resampling: NxN |
29 |
* (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block. |
30 |
* |
31 |
* For N<8 we fill the remaining block coefficients with zero. |
32 |
* For N>8 we apply a partial N-point FDCT on the input samples, computing |
33 |
* just the lower 8 frequency coefficients and discarding the rest. |
34 |
* |
35 |
* We must scale the output coefficients of the N-point FDCT appropriately |
36 |
* to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling |
37 |
* is folded into the constant multipliers (pass 2) and/or final/initial |
38 |
* shifting. |
39 |
* |
40 |
* CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases |
41 |
* since there would be too many additional constants to pre-calculate. |
42 |
*/ |
43 |
|
44 |
#define JPEG_INTERNALS |
45 |
#include "jinclude.h" |
46 |
#include "jpeglib.h" |
47 |
#include "jdct.h" /* Private declarations for DCT subsystem */ |
48 |
|
49 |
#ifdef DCT_ISLOW_SUPPORTED |
50 |
|
51 |
|
52 |
/* |
53 |
* This module is specialized to the case DCTSIZE = 8. |
54 |
*/ |
55 |
|
56 |
#if DCTSIZE != 8 |
57 |
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
58 |
#endif |
59 |
|
60 |
|
61 |
/* |
62 |
* The poop on this scaling stuff is as follows: |
63 |
* |
64 |
* Each 1-D DCT step produces outputs which are a factor of sqrt(N) |
65 |
* larger than the true DCT outputs. The final outputs are therefore |
66 |
* a factor of N larger than desired; since N=8 this can be cured by |
67 |
* a simple right shift at the end of the algorithm. The advantage of |
68 |
* this arrangement is that we save two multiplications per 1-D DCT, |
69 |
* because the y0 and y4 outputs need not be divided by sqrt(N). |
70 |
* In the IJG code, this factor of 8 is removed by the quantization step |
71 |
* (in jcdctmgr.c), NOT in this module. |
72 |
* |
73 |
* We have to do addition and subtraction of the integer inputs, which |
74 |
* is no problem, and multiplication by fractional constants, which is |
75 |
* a problem to do in integer arithmetic. We multiply all the constants |
76 |
* by CONST_SCALE and convert them to integer constants (thus retaining |
77 |
* CONST_BITS bits of precision in the constants). After doing a |
78 |
* multiplication we have to divide the product by CONST_SCALE, with proper |
79 |
* rounding, to produce the correct output. This division can be done |
80 |
* cheaply as a right shift of CONST_BITS bits. We postpone shifting |
81 |
* as long as possible so that partial sums can be added together with |
82 |
* full fractional precision. |
83 |
* |
84 |
* The outputs of the first pass are scaled up by PASS1_BITS bits so that |
85 |
* they are represented to better-than-integral precision. These outputs |
86 |
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
87 |
* with the recommended scaling. (For 12-bit sample data, the intermediate |
88 |
* array is INT32 anyway.) |
89 |
* |
90 |
* To avoid overflow of the 32-bit intermediate results in pass 2, we must |
91 |
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
92 |
* shows that the values given below are the most effective. |
93 |
*/ |
94 |
|
95 |
#if BITS_IN_JSAMPLE == 8 |
96 |
#define CONST_BITS 13 |
97 |
#define PASS1_BITS 2 |
98 |
#else |
99 |
#define CONST_BITS 13 |
100 |
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
101 |
#endif |
102 |
|
103 |
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
104 |
* causing a lot of useless floating-point operations at run time. |
105 |
* To get around this we use the following pre-calculated constants. |
106 |
* If you change CONST_BITS you may want to add appropriate values. |
107 |
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
108 |
*/ |
109 |
|
110 |
#if CONST_BITS == 13 |
111 |
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ |
112 |
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ |
113 |
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ |
114 |
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
115 |
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
116 |
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ |
117 |
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ |
118 |
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
119 |
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ |
120 |
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ |
121 |
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
122 |
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ |
123 |
#else |
124 |
#define FIX_0_298631336 FIX(0.298631336) |
125 |
#define FIX_0_390180644 FIX(0.390180644) |
126 |
#define FIX_0_541196100 FIX(0.541196100) |
127 |
#define FIX_0_765366865 FIX(0.765366865) |
128 |
#define FIX_0_899976223 FIX(0.899976223) |
129 |
#define FIX_1_175875602 FIX(1.175875602) |
130 |
#define FIX_1_501321110 FIX(1.501321110) |
131 |
#define FIX_1_847759065 FIX(1.847759065) |
132 |
#define FIX_1_961570560 FIX(1.961570560) |
133 |
#define FIX_2_053119869 FIX(2.053119869) |
134 |
#define FIX_2_562915447 FIX(2.562915447) |
135 |
#define FIX_3_072711026 FIX(3.072711026) |
136 |
#endif |
137 |
|
138 |
|
139 |
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
140 |
* For 8-bit samples with the recommended scaling, all the variable |
141 |
* and constant values involved are no more than 16 bits wide, so a |
142 |
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
143 |
* For 12-bit samples, a full 32-bit multiplication will be needed. |
144 |
*/ |
145 |
|
146 |
#if BITS_IN_JSAMPLE == 8 |
147 |
#define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
148 |
#else |
149 |
#define MULTIPLY(var,const) ((var) * (const)) |
150 |
#endif |
151 |
|
152 |
|
153 |
/* |
154 |
* Perform the forward DCT on one block of samples. |
155 |
*/ |
156 |
|
157 |
GLOBAL(void) |
158 |
jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
159 |
{ |
160 |
INT32 tmp0, tmp1, tmp2, tmp3; |
161 |
INT32 tmp10, tmp11, tmp12, tmp13; |
162 |
INT32 z1; |
163 |
DCTELEM *dataptr; |
164 |
JSAMPROW elemptr; |
165 |
int ctr; |
166 |
SHIFT_TEMPS |
167 |
|
168 |
/* Pass 1: process rows. */ |
169 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
170 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
171 |
|
172 |
dataptr = data; |
173 |
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
174 |
elemptr = sample_data[ctr] + start_col; |
175 |
|
176 |
/* Even part per LL&M figure 1 --- note that published figure is faulty; |
177 |
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
178 |
*/ |
179 |
|
180 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
181 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
182 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
183 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
184 |
|
185 |
tmp10 = tmp0 + tmp3; |
186 |
tmp12 = tmp0 - tmp3; |
187 |
tmp11 = tmp1 + tmp2; |
188 |
tmp13 = tmp1 - tmp2; |
189 |
|
190 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
191 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
192 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
193 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
194 |
|
195 |
/* Apply unsigned->signed conversion */ |
196 |
dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); |
197 |
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); |
198 |
|
199 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
200 |
/* Add fudge factor here for final descale. */ |
201 |
z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
202 |
dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
203 |
CONST_BITS-PASS1_BITS); |
204 |
dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
205 |
CONST_BITS-PASS1_BITS); |
206 |
|
207 |
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
208 |
* cK represents sqrt(2) * cos(K*pi/16). |
209 |
* i0..i3 in the paper are tmp0..tmp3 here. |
210 |
*/ |
211 |
|
212 |
tmp10 = tmp0 + tmp3; |
213 |
tmp11 = tmp1 + tmp2; |
214 |
tmp12 = tmp0 + tmp2; |
215 |
tmp13 = tmp1 + tmp3; |
216 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
217 |
/* Add fudge factor here for final descale. */ |
218 |
z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
219 |
|
220 |
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
221 |
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
222 |
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
223 |
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
224 |
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
225 |
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
226 |
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
227 |
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
228 |
|
229 |
tmp12 += z1; |
230 |
tmp13 += z1; |
231 |
|
232 |
dataptr[1] = (DCTELEM) |
233 |
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); |
234 |
dataptr[3] = (DCTELEM) |
235 |
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); |
236 |
dataptr[5] = (DCTELEM) |
237 |
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); |
238 |
dataptr[7] = (DCTELEM) |
239 |
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); |
240 |
|
241 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
242 |
} |
243 |
|
244 |
/* Pass 2: process columns. |
245 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
246 |
* by an overall factor of 8. |
247 |
*/ |
248 |
|
249 |
dataptr = data; |
250 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
251 |
/* Even part per LL&M figure 1 --- note that published figure is faulty; |
252 |
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
253 |
*/ |
254 |
|
255 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
256 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
257 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
258 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
259 |
|
260 |
/* Add fudge factor here for final descale. */ |
261 |
tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); |
262 |
tmp12 = tmp0 - tmp3; |
263 |
tmp11 = tmp1 + tmp2; |
264 |
tmp13 = tmp1 - tmp2; |
265 |
|
266 |
tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
267 |
tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
268 |
tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
269 |
tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
270 |
|
271 |
dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); |
272 |
dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); |
273 |
|
274 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
275 |
/* Add fudge factor here for final descale. */ |
276 |
z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
277 |
dataptr[DCTSIZE*2] = (DCTELEM) |
278 |
RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); |
279 |
dataptr[DCTSIZE*6] = (DCTELEM) |
280 |
RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); |
281 |
|
282 |
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
283 |
* cK represents sqrt(2) * cos(K*pi/16). |
284 |
* i0..i3 in the paper are tmp0..tmp3 here. |
285 |
*/ |
286 |
|
287 |
tmp10 = tmp0 + tmp3; |
288 |
tmp11 = tmp1 + tmp2; |
289 |
tmp12 = tmp0 + tmp2; |
290 |
tmp13 = tmp1 + tmp3; |
291 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
292 |
/* Add fudge factor here for final descale. */ |
293 |
z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
294 |
|
295 |
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
296 |
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
297 |
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
298 |
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
299 |
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
300 |
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
301 |
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
302 |
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
303 |
|
304 |
tmp12 += z1; |
305 |
tmp13 += z1; |
306 |
|
307 |
dataptr[DCTSIZE*1] = (DCTELEM) |
308 |
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); |
309 |
dataptr[DCTSIZE*3] = (DCTELEM) |
310 |
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); |
311 |
dataptr[DCTSIZE*5] = (DCTELEM) |
312 |
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); |
313 |
dataptr[DCTSIZE*7] = (DCTELEM) |
314 |
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); |
315 |
|
316 |
dataptr++; /* advance pointer to next column */ |
317 |
} |
318 |
} |
319 |
|
320 |
#ifdef DCT_SCALING_SUPPORTED |
321 |
|
322 |
|
323 |
/* |
324 |
* Perform the forward DCT on a 7x7 sample block. |
325 |
*/ |
326 |
|
327 |
GLOBAL(void) |
328 |
jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
329 |
{ |
330 |
INT32 tmp0, tmp1, tmp2, tmp3; |
331 |
INT32 tmp10, tmp11, tmp12; |
332 |
INT32 z1, z2, z3; |
333 |
DCTELEM *dataptr; |
334 |
JSAMPROW elemptr; |
335 |
int ctr; |
336 |
SHIFT_TEMPS |
337 |
|
338 |
/* Pre-zero output coefficient block. */ |
339 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
340 |
|
341 |
/* Pass 1: process rows. */ |
342 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
343 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
344 |
/* cK represents sqrt(2) * cos(K*pi/14). */ |
345 |
|
346 |
dataptr = data; |
347 |
for (ctr = 0; ctr < 7; ctr++) { |
348 |
elemptr = sample_data[ctr] + start_col; |
349 |
|
350 |
/* Even part */ |
351 |
|
352 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); |
353 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); |
354 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); |
355 |
tmp3 = GETJSAMPLE(elemptr[3]); |
356 |
|
357 |
tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); |
358 |
tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); |
359 |
tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); |
360 |
|
361 |
z1 = tmp0 + tmp2; |
362 |
/* Apply unsigned->signed conversion */ |
363 |
dataptr[0] = (DCTELEM) |
364 |
((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); |
365 |
tmp3 += tmp3; |
366 |
z1 -= tmp3; |
367 |
z1 -= tmp3; |
368 |
z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ |
369 |
z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ |
370 |
z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ |
371 |
dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); |
372 |
z1 -= z2; |
373 |
z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ |
374 |
dataptr[4] = (DCTELEM) |
375 |
DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ |
376 |
CONST_BITS-PASS1_BITS); |
377 |
dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); |
378 |
|
379 |
/* Odd part */ |
380 |
|
381 |
tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
382 |
tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
383 |
tmp0 = tmp1 - tmp2; |
384 |
tmp1 += tmp2; |
385 |
tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ |
386 |
tmp1 += tmp2; |
387 |
tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ |
388 |
tmp0 += tmp3; |
389 |
tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ |
390 |
|
391 |
dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); |
392 |
dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); |
393 |
dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); |
394 |
|
395 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
396 |
} |
397 |
|
398 |
/* Pass 2: process columns. |
399 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
400 |
* by an overall factor of 8. |
401 |
* We must also scale the output by (8/7)**2 = 64/49, which we fold |
402 |
* into the constant multipliers: |
403 |
* cK now represents sqrt(2) * cos(K*pi/14) * 64/49. |
404 |
*/ |
405 |
|
406 |
dataptr = data; |
407 |
for (ctr = 0; ctr < 7; ctr++) { |
408 |
/* Even part */ |
409 |
|
410 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; |
411 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; |
412 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; |
413 |
tmp3 = dataptr[DCTSIZE*3]; |
414 |
|
415 |
tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; |
416 |
tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; |
417 |
tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; |
418 |
|
419 |
z1 = tmp0 + tmp2; |
420 |
dataptr[DCTSIZE*0] = (DCTELEM) |
421 |
DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ |
422 |
CONST_BITS+PASS1_BITS); |
423 |
tmp3 += tmp3; |
424 |
z1 -= tmp3; |
425 |
z1 -= tmp3; |
426 |
z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ |
427 |
z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ |
428 |
z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ |
429 |
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS); |
430 |
z1 -= z2; |
431 |
z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ |
432 |
dataptr[DCTSIZE*4] = (DCTELEM) |
433 |
DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ |
434 |
CONST_BITS+PASS1_BITS); |
435 |
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS); |
436 |
|
437 |
/* Odd part */ |
438 |
|
439 |
tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ |
440 |
tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ |
441 |
tmp0 = tmp1 - tmp2; |
442 |
tmp1 += tmp2; |
443 |
tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ |
444 |
tmp1 += tmp2; |
445 |
tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ |
446 |
tmp0 += tmp3; |
447 |
tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ |
448 |
|
449 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS); |
450 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS); |
451 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS); |
452 |
|
453 |
dataptr++; /* advance pointer to next column */ |
454 |
} |
455 |
} |
456 |
|
457 |
|
458 |
/* |
459 |
* Perform the forward DCT on a 6x6 sample block. |
460 |
*/ |
461 |
|
462 |
GLOBAL(void) |
463 |
jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
464 |
{ |
465 |
INT32 tmp0, tmp1, tmp2; |
466 |
INT32 tmp10, tmp11, tmp12; |
467 |
DCTELEM *dataptr; |
468 |
JSAMPROW elemptr; |
469 |
int ctr; |
470 |
SHIFT_TEMPS |
471 |
|
472 |
/* Pre-zero output coefficient block. */ |
473 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
474 |
|
475 |
/* Pass 1: process rows. */ |
476 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
477 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
478 |
/* cK represents sqrt(2) * cos(K*pi/12). */ |
479 |
|
480 |
dataptr = data; |
481 |
for (ctr = 0; ctr < 6; ctr++) { |
482 |
elemptr = sample_data[ctr] + start_col; |
483 |
|
484 |
/* Even part */ |
485 |
|
486 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); |
487 |
tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); |
488 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); |
489 |
|
490 |
tmp10 = tmp0 + tmp2; |
491 |
tmp12 = tmp0 - tmp2; |
492 |
|
493 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); |
494 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); |
495 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); |
496 |
|
497 |
/* Apply unsigned->signed conversion */ |
498 |
dataptr[0] = (DCTELEM) |
499 |
((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); |
500 |
dataptr[2] = (DCTELEM) |
501 |
DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ |
502 |
CONST_BITS-PASS1_BITS); |
503 |
dataptr[4] = (DCTELEM) |
504 |
DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ |
505 |
CONST_BITS-PASS1_BITS); |
506 |
|
507 |
/* Odd part */ |
508 |
|
509 |
tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ |
510 |
CONST_BITS-PASS1_BITS); |
511 |
|
512 |
dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); |
513 |
dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); |
514 |
dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); |
515 |
|
516 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
517 |
} |
518 |
|
519 |
/* Pass 2: process columns. |
520 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
521 |
* by an overall factor of 8. |
522 |
* We must also scale the output by (8/6)**2 = 16/9, which we fold |
523 |
* into the constant multipliers: |
524 |
* cK now represents sqrt(2) * cos(K*pi/12) * 16/9. |
525 |
*/ |
526 |
|
527 |
dataptr = data; |
528 |
for (ctr = 0; ctr < 6; ctr++) { |
529 |
/* Even part */ |
530 |
|
531 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; |
532 |
tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; |
533 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
534 |
|
535 |
tmp10 = tmp0 + tmp2; |
536 |
tmp12 = tmp0 - tmp2; |
537 |
|
538 |
tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; |
539 |
tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; |
540 |
tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
541 |
|
542 |
dataptr[DCTSIZE*0] = (DCTELEM) |
543 |
DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ |
544 |
CONST_BITS+PASS1_BITS); |
545 |
dataptr[DCTSIZE*2] = (DCTELEM) |
546 |
DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ |
547 |
CONST_BITS+PASS1_BITS); |
548 |
dataptr[DCTSIZE*4] = (DCTELEM) |
549 |
DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ |
550 |
CONST_BITS+PASS1_BITS); |
551 |
|
552 |
/* Odd part */ |
553 |
|
554 |
tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ |
555 |
|
556 |
dataptr[DCTSIZE*1] = (DCTELEM) |
557 |
DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
558 |
CONST_BITS+PASS1_BITS); |
559 |
dataptr[DCTSIZE*3] = (DCTELEM) |
560 |
DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ |
561 |
CONST_BITS+PASS1_BITS); |
562 |
dataptr[DCTSIZE*5] = (DCTELEM) |
563 |
DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ |
564 |
CONST_BITS+PASS1_BITS); |
565 |
|
566 |
dataptr++; /* advance pointer to next column */ |
567 |
} |
568 |
} |
569 |
|
570 |
|
571 |
/* |
572 |
* Perform the forward DCT on a 5x5 sample block. |
573 |
*/ |
574 |
|
575 |
GLOBAL(void) |
576 |
jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
577 |
{ |
578 |
INT32 tmp0, tmp1, tmp2; |
579 |
INT32 tmp10, tmp11; |
580 |
DCTELEM *dataptr; |
581 |
JSAMPROW elemptr; |
582 |
int ctr; |
583 |
SHIFT_TEMPS |
584 |
|
585 |
/* Pre-zero output coefficient block. */ |
586 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
587 |
|
588 |
/* Pass 1: process rows. */ |
589 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
590 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
591 |
/* We scale the results further by 2 as part of output adaption */ |
592 |
/* scaling for different DCT size. */ |
593 |
/* cK represents sqrt(2) * cos(K*pi/10). */ |
594 |
|
595 |
dataptr = data; |
596 |
for (ctr = 0; ctr < 5; ctr++) { |
597 |
elemptr = sample_data[ctr] + start_col; |
598 |
|
599 |
/* Even part */ |
600 |
|
601 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); |
602 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); |
603 |
tmp2 = GETJSAMPLE(elemptr[2]); |
604 |
|
605 |
tmp10 = tmp0 + tmp1; |
606 |
tmp11 = tmp0 - tmp1; |
607 |
|
608 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); |
609 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); |
610 |
|
611 |
/* Apply unsigned->signed conversion */ |
612 |
dataptr[0] = (DCTELEM) |
613 |
((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
614 |
tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ |
615 |
tmp10 -= tmp2 << 2; |
616 |
tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ |
617 |
dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1); |
618 |
dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1); |
619 |
|
620 |
/* Odd part */ |
621 |
|
622 |
tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ |
623 |
|
624 |
dataptr[1] = (DCTELEM) |
625 |
DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ |
626 |
CONST_BITS-PASS1_BITS-1); |
627 |
dataptr[3] = (DCTELEM) |
628 |
DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ |
629 |
CONST_BITS-PASS1_BITS-1); |
630 |
|
631 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
632 |
} |
633 |
|
634 |
/* Pass 2: process columns. |
635 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
636 |
* by an overall factor of 8. |
637 |
* We must also scale the output by (8/5)**2 = 64/25, which we partially |
638 |
* fold into the constant multipliers (other part was done in pass 1): |
639 |
* cK now represents sqrt(2) * cos(K*pi/10) * 32/25. |
640 |
*/ |
641 |
|
642 |
dataptr = data; |
643 |
for (ctr = 0; ctr < 5; ctr++) { |
644 |
/* Even part */ |
645 |
|
646 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; |
647 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; |
648 |
tmp2 = dataptr[DCTSIZE*2]; |
649 |
|
650 |
tmp10 = tmp0 + tmp1; |
651 |
tmp11 = tmp0 - tmp1; |
652 |
|
653 |
tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; |
654 |
tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; |
655 |
|
656 |
dataptr[DCTSIZE*0] = (DCTELEM) |
657 |
DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ |
658 |
CONST_BITS+PASS1_BITS); |
659 |
tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ |
660 |
tmp10 -= tmp2 << 2; |
661 |
tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ |
662 |
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); |
663 |
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); |
664 |
|
665 |
/* Odd part */ |
666 |
|
667 |
tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ |
668 |
|
669 |
dataptr[DCTSIZE*1] = (DCTELEM) |
670 |
DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ |
671 |
CONST_BITS+PASS1_BITS); |
672 |
dataptr[DCTSIZE*3] = (DCTELEM) |
673 |
DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ |
674 |
CONST_BITS+PASS1_BITS); |
675 |
|
676 |
dataptr++; /* advance pointer to next column */ |
677 |
} |
678 |
} |
679 |
|
680 |
|
681 |
/* |
682 |
* Perform the forward DCT on a 4x4 sample block. |
683 |
*/ |
684 |
|
685 |
GLOBAL(void) |
686 |
jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
687 |
{ |
688 |
INT32 tmp0, tmp1; |
689 |
INT32 tmp10, tmp11; |
690 |
DCTELEM *dataptr; |
691 |
JSAMPROW elemptr; |
692 |
int ctr; |
693 |
SHIFT_TEMPS |
694 |
|
695 |
/* Pre-zero output coefficient block. */ |
696 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
697 |
|
698 |
/* Pass 1: process rows. */ |
699 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
700 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
701 |
/* We must also scale the output by (8/4)**2 = 2**2, which we add here. */ |
702 |
/* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ |
703 |
|
704 |
dataptr = data; |
705 |
for (ctr = 0; ctr < 4; ctr++) { |
706 |
elemptr = sample_data[ctr] + start_col; |
707 |
|
708 |
/* Even part */ |
709 |
|
710 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); |
711 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); |
712 |
|
713 |
tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); |
714 |
tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); |
715 |
|
716 |
/* Apply unsigned->signed conversion */ |
717 |
dataptr[0] = (DCTELEM) |
718 |
((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2)); |
719 |
dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2)); |
720 |
|
721 |
/* Odd part */ |
722 |
|
723 |
tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
724 |
/* Add fudge factor here for final descale. */ |
725 |
tmp0 += ONE << (CONST_BITS-PASS1_BITS-3); |
726 |
|
727 |
dataptr[1] = (DCTELEM) |
728 |
RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
729 |
CONST_BITS-PASS1_BITS-2); |
730 |
dataptr[3] = (DCTELEM) |
731 |
RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
732 |
CONST_BITS-PASS1_BITS-2); |
733 |
|
734 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
735 |
} |
736 |
|
737 |
/* Pass 2: process columns. |
738 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
739 |
* by an overall factor of 8. |
740 |
*/ |
741 |
|
742 |
dataptr = data; |
743 |
for (ctr = 0; ctr < 4; ctr++) { |
744 |
/* Even part */ |
745 |
|
746 |
/* Add fudge factor here for final descale. */ |
747 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); |
748 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; |
749 |
|
750 |
tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; |
751 |
tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; |
752 |
|
753 |
dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); |
754 |
dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); |
755 |
|
756 |
/* Odd part */ |
757 |
|
758 |
tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
759 |
/* Add fudge factor here for final descale. */ |
760 |
tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); |
761 |
|
762 |
dataptr[DCTSIZE*1] = (DCTELEM) |
763 |
RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
764 |
CONST_BITS+PASS1_BITS); |
765 |
dataptr[DCTSIZE*3] = (DCTELEM) |
766 |
RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
767 |
CONST_BITS+PASS1_BITS); |
768 |
|
769 |
dataptr++; /* advance pointer to next column */ |
770 |
} |
771 |
} |
772 |
|
773 |
|
774 |
/* |
775 |
* Perform the forward DCT on a 3x3 sample block. |
776 |
*/ |
777 |
|
778 |
GLOBAL(void) |
779 |
jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
780 |
{ |
781 |
INT32 tmp0, tmp1, tmp2; |
782 |
DCTELEM *dataptr; |
783 |
JSAMPROW elemptr; |
784 |
int ctr; |
785 |
SHIFT_TEMPS |
786 |
|
787 |
/* Pre-zero output coefficient block. */ |
788 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
789 |
|
790 |
/* Pass 1: process rows. */ |
791 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
792 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
793 |
/* We scale the results further by 2**2 as part of output adaption */ |
794 |
/* scaling for different DCT size. */ |
795 |
/* cK represents sqrt(2) * cos(K*pi/6). */ |
796 |
|
797 |
dataptr = data; |
798 |
for (ctr = 0; ctr < 3; ctr++) { |
799 |
elemptr = sample_data[ctr] + start_col; |
800 |
|
801 |
/* Even part */ |
802 |
|
803 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); |
804 |
tmp1 = GETJSAMPLE(elemptr[1]); |
805 |
|
806 |
tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); |
807 |
|
808 |
/* Apply unsigned->signed conversion */ |
809 |
dataptr[0] = (DCTELEM) |
810 |
((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2)); |
811 |
dataptr[2] = (DCTELEM) |
812 |
DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ |
813 |
CONST_BITS-PASS1_BITS-2); |
814 |
|
815 |
/* Odd part */ |
816 |
|
817 |
dataptr[1] = (DCTELEM) |
818 |
DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ |
819 |
CONST_BITS-PASS1_BITS-2); |
820 |
|
821 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
822 |
} |
823 |
|
824 |
/* Pass 2: process columns. |
825 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
826 |
* by an overall factor of 8. |
827 |
* We must also scale the output by (8/3)**2 = 64/9, which we partially |
828 |
* fold into the constant multipliers (other part was done in pass 1): |
829 |
* cK now represents sqrt(2) * cos(K*pi/6) * 16/9. |
830 |
*/ |
831 |
|
832 |
dataptr = data; |
833 |
for (ctr = 0; ctr < 3; ctr++) { |
834 |
/* Even part */ |
835 |
|
836 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; |
837 |
tmp1 = dataptr[DCTSIZE*1]; |
838 |
|
839 |
tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; |
840 |
|
841 |
dataptr[DCTSIZE*0] = (DCTELEM) |
842 |
DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
843 |
CONST_BITS+PASS1_BITS); |
844 |
dataptr[DCTSIZE*2] = (DCTELEM) |
845 |
DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ |
846 |
CONST_BITS+PASS1_BITS); |
847 |
|
848 |
/* Odd part */ |
849 |
|
850 |
dataptr[DCTSIZE*1] = (DCTELEM) |
851 |
DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ |
852 |
CONST_BITS+PASS1_BITS); |
853 |
|
854 |
dataptr++; /* advance pointer to next column */ |
855 |
} |
856 |
} |
857 |
|
858 |
|
859 |
/* |
860 |
* Perform the forward DCT on a 2x2 sample block. |
861 |
*/ |
862 |
|
863 |
GLOBAL(void) |
864 |
jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
865 |
{ |
866 |
INT32 tmp0, tmp1, tmp2, tmp3; |
867 |
JSAMPROW elemptr; |
868 |
|
869 |
/* Pre-zero output coefficient block. */ |
870 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
871 |
|
872 |
/* Pass 1: process rows. */ |
873 |
/* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
874 |
|
875 |
/* Row 0 */ |
876 |
elemptr = sample_data[0] + start_col; |
877 |
|
878 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); |
879 |
tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); |
880 |
|
881 |
/* Row 1 */ |
882 |
elemptr = sample_data[1] + start_col; |
883 |
|
884 |
tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); |
885 |
tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); |
886 |
|
887 |
/* Pass 2: process columns. |
888 |
* We leave the results scaled up by an overall factor of 8. |
889 |
* We must also scale the output by (8/2)**2 = 2**4. |
890 |
*/ |
891 |
|
892 |
/* Column 0 */ |
893 |
/* Apply unsigned->signed conversion */ |
894 |
data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4); |
895 |
data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp2) << 4); |
896 |
|
897 |
/* Column 1 */ |
898 |
data[DCTSIZE*0+1] = (DCTELEM) ((tmp1 + tmp3) << 4); |
899 |
data[DCTSIZE*1+1] = (DCTELEM) ((tmp1 - tmp3) << 4); |
900 |
} |
901 |
|
902 |
|
903 |
/* |
904 |
* Perform the forward DCT on a 1x1 sample block. |
905 |
*/ |
906 |
|
907 |
GLOBAL(void) |
908 |
jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
909 |
{ |
910 |
/* Pre-zero output coefficient block. */ |
911 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
912 |
|
913 |
/* We leave the result scaled up by an overall factor of 8. */ |
914 |
/* We must also scale the output by (8/1)**2 = 2**6. */ |
915 |
/* Apply unsigned->signed conversion */ |
916 |
data[0] = (DCTELEM) |
917 |
((GETJSAMPLE(sample_data[0][start_col]) - CENTERJSAMPLE) << 6); |
918 |
} |
919 |
|
920 |
|
921 |
/* |
922 |
* Perform the forward DCT on a 9x9 sample block. |
923 |
*/ |
924 |
|
925 |
GLOBAL(void) |
926 |
jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
927 |
{ |
928 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
929 |
INT32 tmp10, tmp11, tmp12, tmp13; |
930 |
INT32 z1, z2; |
931 |
DCTELEM workspace[8]; |
932 |
DCTELEM *dataptr; |
933 |
DCTELEM *wsptr; |
934 |
JSAMPROW elemptr; |
935 |
int ctr; |
936 |
SHIFT_TEMPS |
937 |
|
938 |
/* Pass 1: process rows. */ |
939 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
940 |
/* we scale the results further by 2 as part of output adaption */ |
941 |
/* scaling for different DCT size. */ |
942 |
/* cK represents sqrt(2) * cos(K*pi/18). */ |
943 |
|
944 |
dataptr = data; |
945 |
ctr = 0; |
946 |
for (;;) { |
947 |
elemptr = sample_data[ctr] + start_col; |
948 |
|
949 |
/* Even part */ |
950 |
|
951 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]); |
952 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]); |
953 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]); |
954 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]); |
955 |
tmp4 = GETJSAMPLE(elemptr[4]); |
956 |
|
957 |
tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]); |
958 |
tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]); |
959 |
tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]); |
960 |
tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]); |
961 |
|
962 |
z1 = tmp0 + tmp2 + tmp3; |
963 |
z2 = tmp1 + tmp4; |
964 |
/* Apply unsigned->signed conversion */ |
965 |
dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1); |
966 |
dataptr[6] = (DCTELEM) |
967 |
DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)), /* c6 */ |
968 |
CONST_BITS-1); |
969 |
z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049)); /* c2 */ |
970 |
z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */ |
971 |
dataptr[2] = (DCTELEM) |
972 |
DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441)) /* c4 */ |
973 |
+ z1 + z2, CONST_BITS-1); |
974 |
dataptr[4] = (DCTELEM) |
975 |
DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608)) /* c8 */ |
976 |
+ z1 - z2, CONST_BITS-1); |
977 |
|
978 |
/* Odd part */ |
979 |
|
980 |
dataptr[3] = (DCTELEM) |
981 |
DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */ |
982 |
CONST_BITS-1); |
983 |
|
984 |
tmp11 = MULTIPLY(tmp11, FIX(1.224744871)); /* c3 */ |
985 |
tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */ |
986 |
tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */ |
987 |
|
988 |
dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1); |
989 |
|
990 |
tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */ |
991 |
|
992 |
dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1); |
993 |
dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1); |
994 |
|
995 |
ctr++; |
996 |
|
997 |
if (ctr != DCTSIZE) { |
998 |
if (ctr == 9) |
999 |
break; /* Done. */ |
1000 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
1001 |
} else |
1002 |
dataptr = workspace; /* switch pointer to extended workspace */ |
1003 |
} |
1004 |
|
1005 |
/* Pass 2: process columns. |
1006 |
* We leave the results scaled up by an overall factor of 8. |
1007 |
* We must also scale the output by (8/9)**2 = 64/81, which we partially |
1008 |
* fold into the constant multipliers and final/initial shifting: |
1009 |
* cK now represents sqrt(2) * cos(K*pi/18) * 128/81. |
1010 |
*/ |
1011 |
|
1012 |
dataptr = data; |
1013 |
wsptr = workspace; |
1014 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1015 |
/* Even part */ |
1016 |
|
1017 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0]; |
1018 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7]; |
1019 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6]; |
1020 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5]; |
1021 |
tmp4 = dataptr[DCTSIZE*4]; |
1022 |
|
1023 |
tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0]; |
1024 |
tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7]; |
1025 |
tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6]; |
1026 |
tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5]; |
1027 |
|
1028 |
z1 = tmp0 + tmp2 + tmp3; |
1029 |
z2 = tmp1 + tmp4; |
1030 |
dataptr[DCTSIZE*0] = (DCTELEM) |
1031 |
DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)), /* 128/81 */ |
1032 |
CONST_BITS+2); |
1033 |
dataptr[DCTSIZE*6] = (DCTELEM) |
1034 |
DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)), /* c6 */ |
1035 |
CONST_BITS+2); |
1036 |
z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287)); /* c2 */ |
1037 |
z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */ |
1038 |
dataptr[DCTSIZE*2] = (DCTELEM) |
1039 |
DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190)) /* c4 */ |
1040 |
+ z1 + z2, CONST_BITS+2); |
1041 |
dataptr[DCTSIZE*4] = (DCTELEM) |
1042 |
DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096)) /* c8 */ |
1043 |
+ z1 - z2, CONST_BITS+2); |
1044 |
|
1045 |
/* Odd part */ |
1046 |
|
1047 |
dataptr[DCTSIZE*3] = (DCTELEM) |
1048 |
DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */ |
1049 |
CONST_BITS+2); |
1050 |
|
1051 |
tmp11 = MULTIPLY(tmp11, FIX(1.935399303)); /* c3 */ |
1052 |
tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */ |
1053 |
tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */ |
1054 |
|
1055 |
dataptr[DCTSIZE*1] = (DCTELEM) |
1056 |
DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2); |
1057 |
|
1058 |
tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */ |
1059 |
|
1060 |
dataptr[DCTSIZE*5] = (DCTELEM) |
1061 |
DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2); |
1062 |
dataptr[DCTSIZE*7] = (DCTELEM) |
1063 |
DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2); |
1064 |
|
1065 |
dataptr++; /* advance pointer to next column */ |
1066 |
wsptr++; /* advance pointer to next column */ |
1067 |
} |
1068 |
} |
1069 |
|
1070 |
|
1071 |
/* |
1072 |
* Perform the forward DCT on a 10x10 sample block. |
1073 |
*/ |
1074 |
|
1075 |
GLOBAL(void) |
1076 |
jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1077 |
{ |
1078 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
1079 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
1080 |
DCTELEM workspace[8*2]; |
1081 |
DCTELEM *dataptr; |
1082 |
DCTELEM *wsptr; |
1083 |
JSAMPROW elemptr; |
1084 |
int ctr; |
1085 |
SHIFT_TEMPS |
1086 |
|
1087 |
/* Pass 1: process rows. */ |
1088 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
1089 |
/* we scale the results further by 2 as part of output adaption */ |
1090 |
/* scaling for different DCT size. */ |
1091 |
/* cK represents sqrt(2) * cos(K*pi/20). */ |
1092 |
|
1093 |
dataptr = data; |
1094 |
ctr = 0; |
1095 |
for (;;) { |
1096 |
elemptr = sample_data[ctr] + start_col; |
1097 |
|
1098 |
/* Even part */ |
1099 |
|
1100 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); |
1101 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); |
1102 |
tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); |
1103 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); |
1104 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); |
1105 |
|
1106 |
tmp10 = tmp0 + tmp4; |
1107 |
tmp13 = tmp0 - tmp4; |
1108 |
tmp11 = tmp1 + tmp3; |
1109 |
tmp14 = tmp1 - tmp3; |
1110 |
|
1111 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); |
1112 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); |
1113 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); |
1114 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); |
1115 |
tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); |
1116 |
|
1117 |
/* Apply unsigned->signed conversion */ |
1118 |
dataptr[0] = (DCTELEM) |
1119 |
((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1); |
1120 |
tmp12 += tmp12; |
1121 |
dataptr[4] = (DCTELEM) |
1122 |
DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ |
1123 |
MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ |
1124 |
CONST_BITS-1); |
1125 |
tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ |
1126 |
dataptr[2] = (DCTELEM) |
1127 |
DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ |
1128 |
CONST_BITS-1); |
1129 |
dataptr[6] = (DCTELEM) |
1130 |
DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ |
1131 |
CONST_BITS-1); |
1132 |
|
1133 |
/* Odd part */ |
1134 |
|
1135 |
tmp10 = tmp0 + tmp4; |
1136 |
tmp11 = tmp1 - tmp3; |
1137 |
dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1); |
1138 |
tmp2 <<= CONST_BITS; |
1139 |
dataptr[1] = (DCTELEM) |
1140 |
DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ |
1141 |
MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ |
1142 |
MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ |
1143 |
MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ |
1144 |
CONST_BITS-1); |
1145 |
tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ |
1146 |
MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ |
1147 |
tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ |
1148 |
(tmp11 << (CONST_BITS - 1)) - tmp2; |
1149 |
dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1); |
1150 |
dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1); |
1151 |
|
1152 |
ctr++; |
1153 |
|
1154 |
if (ctr != DCTSIZE) { |
1155 |
if (ctr == 10) |
1156 |
break; /* Done. */ |
1157 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
1158 |
} else |
1159 |
dataptr = workspace; /* switch pointer to extended workspace */ |
1160 |
} |
1161 |
|
1162 |
/* Pass 2: process columns. |
1163 |
* We leave the results scaled up by an overall factor of 8. |
1164 |
* We must also scale the output by (8/10)**2 = 16/25, which we partially |
1165 |
* fold into the constant multipliers and final/initial shifting: |
1166 |
* cK now represents sqrt(2) * cos(K*pi/20) * 32/25. |
1167 |
*/ |
1168 |
|
1169 |
dataptr = data; |
1170 |
wsptr = workspace; |
1171 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1172 |
/* Even part */ |
1173 |
|
1174 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; |
1175 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; |
1176 |
tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; |
1177 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; |
1178 |
tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; |
1179 |
|
1180 |
tmp10 = tmp0 + tmp4; |
1181 |
tmp13 = tmp0 - tmp4; |
1182 |
tmp11 = tmp1 + tmp3; |
1183 |
tmp14 = tmp1 - tmp3; |
1184 |
|
1185 |
tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; |
1186 |
tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; |
1187 |
tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; |
1188 |
tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; |
1189 |
tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; |
1190 |
|
1191 |
dataptr[DCTSIZE*0] = (DCTELEM) |
1192 |
DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ |
1193 |
CONST_BITS+2); |
1194 |
tmp12 += tmp12; |
1195 |
dataptr[DCTSIZE*4] = (DCTELEM) |
1196 |
DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ |
1197 |
MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ |
1198 |
CONST_BITS+2); |
1199 |
tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ |
1200 |
dataptr[DCTSIZE*2] = (DCTELEM) |
1201 |
DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ |
1202 |
CONST_BITS+2); |
1203 |
dataptr[DCTSIZE*6] = (DCTELEM) |
1204 |
DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ |
1205 |
CONST_BITS+2); |
1206 |
|
1207 |
/* Odd part */ |
1208 |
|
1209 |
tmp10 = tmp0 + tmp4; |
1210 |
tmp11 = tmp1 - tmp3; |
1211 |
dataptr[DCTSIZE*5] = (DCTELEM) |
1212 |
DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ |
1213 |
CONST_BITS+2); |
1214 |
tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ |
1215 |
dataptr[DCTSIZE*1] = (DCTELEM) |
1216 |
DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ |
1217 |
MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ |
1218 |
MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ |
1219 |
MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ |
1220 |
CONST_BITS+2); |
1221 |
tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ |
1222 |
MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ |
1223 |
tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ |
1224 |
MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ |
1225 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2); |
1226 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2); |
1227 |
|
1228 |
dataptr++; /* advance pointer to next column */ |
1229 |
wsptr++; /* advance pointer to next column */ |
1230 |
} |
1231 |
} |
1232 |
|
1233 |
|
1234 |
/* |
1235 |
* Perform the forward DCT on an 11x11 sample block. |
1236 |
*/ |
1237 |
|
1238 |
GLOBAL(void) |
1239 |
jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1240 |
{ |
1241 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
1242 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
1243 |
INT32 z1, z2, z3; |
1244 |
DCTELEM workspace[8*3]; |
1245 |
DCTELEM *dataptr; |
1246 |
DCTELEM *wsptr; |
1247 |
JSAMPROW elemptr; |
1248 |
int ctr; |
1249 |
SHIFT_TEMPS |
1250 |
|
1251 |
/* Pass 1: process rows. */ |
1252 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
1253 |
/* we scale the results further by 2 as part of output adaption */ |
1254 |
/* scaling for different DCT size. */ |
1255 |
/* cK represents sqrt(2) * cos(K*pi/22). */ |
1256 |
|
1257 |
dataptr = data; |
1258 |
ctr = 0; |
1259 |
for (;;) { |
1260 |
elemptr = sample_data[ctr] + start_col; |
1261 |
|
1262 |
/* Even part */ |
1263 |
|
1264 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]); |
1265 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]); |
1266 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]); |
1267 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]); |
1268 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]); |
1269 |
tmp5 = GETJSAMPLE(elemptr[5]); |
1270 |
|
1271 |
tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]); |
1272 |
tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]); |
1273 |
tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]); |
1274 |
tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]); |
1275 |
tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]); |
1276 |
|
1277 |
/* Apply unsigned->signed conversion */ |
1278 |
dataptr[0] = (DCTELEM) |
1279 |
((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1); |
1280 |
tmp5 += tmp5; |
1281 |
tmp0 -= tmp5; |
1282 |
tmp1 -= tmp5; |
1283 |
tmp2 -= tmp5; |
1284 |
tmp3 -= tmp5; |
1285 |
tmp4 -= tmp5; |
1286 |
z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) + /* c2 */ |
1287 |
MULTIPLY(tmp2 + tmp4, FIX(0.201263574)); /* c10 */ |
1288 |
z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931)); /* c6 */ |
1289 |
z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156)); /* c4 */ |
1290 |
dataptr[2] = (DCTELEM) |
1291 |
DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */ |
1292 |
- MULTIPLY(tmp4, FIX(1.390975730)), /* c4+c10 */ |
1293 |
CONST_BITS-1); |
1294 |
dataptr[4] = (DCTELEM) |
1295 |
DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */ |
1296 |
- MULTIPLY(tmp2, FIX(1.356927976)) /* c2 */ |
1297 |
+ MULTIPLY(tmp4, FIX(0.587485545)), /* c8 */ |
1298 |
CONST_BITS-1); |
1299 |
dataptr[6] = (DCTELEM) |
1300 |
DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */ |
1301 |
- MULTIPLY(tmp2, FIX(0.788749120)), /* c8+c10 */ |
1302 |
CONST_BITS-1); |
1303 |
|
1304 |
/* Odd part */ |
1305 |
|
1306 |
tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905)); /* c3 */ |
1307 |
tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298)); /* c5 */ |
1308 |
tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576)); /* c7 */ |
1309 |
tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */ |
1310 |
+ MULTIPLY(tmp14, FIX(0.398430003)); /* c9 */ |
1311 |
tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576)); /* -c7 */ |
1312 |
tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907)); /* -c1 */ |
1313 |
tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */ |
1314 |
- MULTIPLY(tmp14, FIX(1.068791298)); /* c5 */ |
1315 |
tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003)); /* c9 */ |
1316 |
tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */ |
1317 |
+ MULTIPLY(tmp14, FIX(1.399818907)); /* c1 */ |
1318 |
tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */ |
1319 |
- MULTIPLY(tmp14, FIX(1.286413905)); /* c3 */ |
1320 |
|
1321 |
dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1); |
1322 |
dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1); |
1323 |
dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1); |
1324 |
dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1); |
1325 |
|
1326 |
ctr++; |
1327 |
|
1328 |
if (ctr != DCTSIZE) { |
1329 |
if (ctr == 11) |
1330 |
break; /* Done. */ |
1331 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
1332 |
} else |
1333 |
dataptr = workspace; /* switch pointer to extended workspace */ |
1334 |
} |
1335 |
|
1336 |
/* Pass 2: process columns. |
1337 |
* We leave the results scaled up by an overall factor of 8. |
1338 |
* We must also scale the output by (8/11)**2 = 64/121, which we partially |
1339 |
* fold into the constant multipliers and final/initial shifting: |
1340 |
* cK now represents sqrt(2) * cos(K*pi/22) * 128/121. |
1341 |
*/ |
1342 |
|
1343 |
dataptr = data; |
1344 |
wsptr = workspace; |
1345 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1346 |
/* Even part */ |
1347 |
|
1348 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2]; |
1349 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1]; |
1350 |
tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0]; |
1351 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7]; |
1352 |
tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6]; |
1353 |
tmp5 = dataptr[DCTSIZE*5]; |
1354 |
|
1355 |
tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2]; |
1356 |
tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1]; |
1357 |
tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0]; |
1358 |
tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7]; |
1359 |
tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6]; |
1360 |
|
1361 |
dataptr[DCTSIZE*0] = (DCTELEM) |
1362 |
DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5, |
1363 |
FIX(1.057851240)), /* 128/121 */ |
1364 |
CONST_BITS+2); |
1365 |
tmp5 += tmp5; |
1366 |
tmp0 -= tmp5; |
1367 |
tmp1 -= tmp5; |
1368 |
tmp2 -= tmp5; |
1369 |
tmp3 -= tmp5; |
1370 |
tmp4 -= tmp5; |
1371 |
z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) + /* c2 */ |
1372 |
MULTIPLY(tmp2 + tmp4, FIX(0.212906922)); /* c10 */ |
1373 |
z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713)); /* c6 */ |
1374 |
z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479)); /* c4 */ |
1375 |
dataptr[DCTSIZE*2] = (DCTELEM) |
1376 |
DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */ |
1377 |
- MULTIPLY(tmp4, FIX(1.471445400)), /* c4+c10 */ |
1378 |
CONST_BITS+2); |
1379 |
dataptr[DCTSIZE*4] = (DCTELEM) |
1380 |
DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */ |
1381 |
- MULTIPLY(tmp2, FIX(1.435427942)) /* c2 */ |
1382 |
+ MULTIPLY(tmp4, FIX(0.621472312)), /* c8 */ |
1383 |
CONST_BITS+2); |
1384 |
dataptr[DCTSIZE*6] = (DCTELEM) |
1385 |
DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */ |
1386 |
- MULTIPLY(tmp2, FIX(0.834379234)), /* c8+c10 */ |
1387 |
CONST_BITS+2); |
1388 |
|
1389 |
/* Odd part */ |
1390 |
|
1391 |
tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544)); /* c3 */ |
1392 |
tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199)); /* c5 */ |
1393 |
tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568)); /* c7 */ |
1394 |
tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */ |
1395 |
+ MULTIPLY(tmp14, FIX(0.421479672)); /* c9 */ |
1396 |
tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568)); /* -c7 */ |
1397 |
tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167)); /* -c1 */ |
1398 |
tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */ |
1399 |
- MULTIPLY(tmp14, FIX(1.130622199)); /* c5 */ |
1400 |
tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672)); /* c9 */ |
1401 |
tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */ |
1402 |
+ MULTIPLY(tmp14, FIX(1.480800167)); /* c1 */ |
1403 |
tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */ |
1404 |
- MULTIPLY(tmp14, FIX(1.360834544)); /* c3 */ |
1405 |
|
1406 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); |
1407 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); |
1408 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); |
1409 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); |
1410 |
|
1411 |
dataptr++; /* advance pointer to next column */ |
1412 |
wsptr++; /* advance pointer to next column */ |
1413 |
} |
1414 |
} |
1415 |
|
1416 |
|
1417 |
/* |
1418 |
* Perform the forward DCT on a 12x12 sample block. |
1419 |
*/ |
1420 |
|
1421 |
GLOBAL(void) |
1422 |
jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1423 |
{ |
1424 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
1425 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
1426 |
DCTELEM workspace[8*4]; |
1427 |
DCTELEM *dataptr; |
1428 |
DCTELEM *wsptr; |
1429 |
JSAMPROW elemptr; |
1430 |
int ctr; |
1431 |
SHIFT_TEMPS |
1432 |
|
1433 |
/* Pass 1: process rows. */ |
1434 |
/* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
1435 |
/* cK represents sqrt(2) * cos(K*pi/24). */ |
1436 |
|
1437 |
dataptr = data; |
1438 |
ctr = 0; |
1439 |
for (;;) { |
1440 |
elemptr = sample_data[ctr] + start_col; |
1441 |
|
1442 |
/* Even part */ |
1443 |
|
1444 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); |
1445 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); |
1446 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); |
1447 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); |
1448 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); |
1449 |
tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); |
1450 |
|
1451 |
tmp10 = tmp0 + tmp5; |
1452 |
tmp13 = tmp0 - tmp5; |
1453 |
tmp11 = tmp1 + tmp4; |
1454 |
tmp14 = tmp1 - tmp4; |
1455 |
tmp12 = tmp2 + tmp3; |
1456 |
tmp15 = tmp2 - tmp3; |
1457 |
|
1458 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); |
1459 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); |
1460 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); |
1461 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); |
1462 |
tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); |
1463 |
tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); |
1464 |
|
1465 |
/* Apply unsigned->signed conversion */ |
1466 |
dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE); |
1467 |
dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15); |
1468 |
dataptr[4] = (DCTELEM) |
1469 |
DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ |
1470 |
CONST_BITS); |
1471 |
dataptr[2] = (DCTELEM) |
1472 |
DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ |
1473 |
CONST_BITS); |
1474 |
|
1475 |
/* Odd part */ |
1476 |
|
1477 |
tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ |
1478 |
tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ |
1479 |
tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ |
1480 |
tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ |
1481 |
tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ |
1482 |
tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ |
1483 |
+ MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ |
1484 |
tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ |
1485 |
tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ |
1486 |
+ MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ |
1487 |
tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ |
1488 |
- MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ |
1489 |
tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ |
1490 |
- MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ |
1491 |
|
1492 |
dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS); |
1493 |
dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS); |
1494 |
dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS); |
1495 |
dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS); |
1496 |
|
1497 |
ctr++; |
1498 |
|
1499 |
if (ctr != DCTSIZE) { |
1500 |
if (ctr == 12) |
1501 |
break; /* Done. */ |
1502 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
1503 |
} else |
1504 |
dataptr = workspace; /* switch pointer to extended workspace */ |
1505 |
} |
1506 |
|
1507 |
/* Pass 2: process columns. |
1508 |
* We leave the results scaled up by an overall factor of 8. |
1509 |
* We must also scale the output by (8/12)**2 = 4/9, which we partially |
1510 |
* fold into the constant multipliers and final shifting: |
1511 |
* cK now represents sqrt(2) * cos(K*pi/24) * 8/9. |
1512 |
*/ |
1513 |
|
1514 |
dataptr = data; |
1515 |
wsptr = workspace; |
1516 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1517 |
/* Even part */ |
1518 |
|
1519 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; |
1520 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; |
1521 |
tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; |
1522 |
tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; |
1523 |
tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; |
1524 |
tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; |
1525 |
|
1526 |
tmp10 = tmp0 + tmp5; |
1527 |
tmp13 = tmp0 - tmp5; |
1528 |
tmp11 = tmp1 + tmp4; |
1529 |
tmp14 = tmp1 - tmp4; |
1530 |
tmp12 = tmp2 + tmp3; |
1531 |
tmp15 = tmp2 - tmp3; |
1532 |
|
1533 |
tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; |
1534 |
tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; |
1535 |
tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; |
1536 |
tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; |
1537 |
tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; |
1538 |
tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; |
1539 |
|
1540 |
dataptr[DCTSIZE*0] = (DCTELEM) |
1541 |
DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ |
1542 |
CONST_BITS+1); |
1543 |
dataptr[DCTSIZE*6] = (DCTELEM) |
1544 |
DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ |
1545 |
CONST_BITS+1); |
1546 |
dataptr[DCTSIZE*4] = (DCTELEM) |
1547 |
DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ |
1548 |
CONST_BITS+1); |
1549 |
dataptr[DCTSIZE*2] = (DCTELEM) |
1550 |
DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ |
1551 |
MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ |
1552 |
CONST_BITS+1); |
1553 |
|
1554 |
/* Odd part */ |
1555 |
|
1556 |
tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ |
1557 |
tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ |
1558 |
tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ |
1559 |
tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ |
1560 |
tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ |
1561 |
tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ |
1562 |
+ MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ |
1563 |
tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ |
1564 |
tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ |
1565 |
+ MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ |
1566 |
tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ |
1567 |
- MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ |
1568 |
tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ |
1569 |
- MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ |
1570 |
|
1571 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1); |
1572 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1); |
1573 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1); |
1574 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1); |
1575 |
|
1576 |
dataptr++; /* advance pointer to next column */ |
1577 |
wsptr++; /* advance pointer to next column */ |
1578 |
} |
1579 |
} |
1580 |
|
1581 |
|
1582 |
/* |
1583 |
* Perform the forward DCT on a 13x13 sample block. |
1584 |
*/ |
1585 |
|
1586 |
GLOBAL(void) |
1587 |
jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1588 |
{ |
1589 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
1590 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
1591 |
INT32 z1, z2; |
1592 |
DCTELEM workspace[8*5]; |
1593 |
DCTELEM *dataptr; |
1594 |
DCTELEM *wsptr; |
1595 |
JSAMPROW elemptr; |
1596 |
int ctr; |
1597 |
SHIFT_TEMPS |
1598 |
|
1599 |
/* Pass 1: process rows. */ |
1600 |
/* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
1601 |
/* cK represents sqrt(2) * cos(K*pi/26). */ |
1602 |
|
1603 |
dataptr = data; |
1604 |
ctr = 0; |
1605 |
for (;;) { |
1606 |
elemptr = sample_data[ctr] + start_col; |
1607 |
|
1608 |
/* Even part */ |
1609 |
|
1610 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]); |
1611 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]); |
1612 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]); |
1613 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]); |
1614 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]); |
1615 |
tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]); |
1616 |
tmp6 = GETJSAMPLE(elemptr[6]); |
1617 |
|
1618 |
tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]); |
1619 |
tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]); |
1620 |
tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]); |
1621 |
tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]); |
1622 |
tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]); |
1623 |
tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]); |
1624 |
|
1625 |
/* Apply unsigned->signed conversion */ |
1626 |
dataptr[0] = (DCTELEM) |
1627 |
(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE); |
1628 |
tmp6 += tmp6; |
1629 |
tmp0 -= tmp6; |
1630 |
tmp1 -= tmp6; |
1631 |
tmp2 -= tmp6; |
1632 |
tmp3 -= tmp6; |
1633 |
tmp4 -= tmp6; |
1634 |
tmp5 -= tmp6; |
1635 |
dataptr[2] = (DCTELEM) |
1636 |
DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) + /* c2 */ |
1637 |
MULTIPLY(tmp1, FIX(1.058554052)) + /* c6 */ |
1638 |
MULTIPLY(tmp2, FIX(0.501487041)) - /* c10 */ |
1639 |
MULTIPLY(tmp3, FIX(0.170464608)) - /* c12 */ |
1640 |
MULTIPLY(tmp4, FIX(0.803364869)) - /* c8 */ |
1641 |
MULTIPLY(tmp5, FIX(1.252223920)), /* c4 */ |
1642 |
CONST_BITS); |
1643 |
z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */ |
1644 |
MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */ |
1645 |
MULTIPLY(tmp1 - tmp5, FIX(0.316450131)); /* (c8-c12)/2 */ |
1646 |
z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */ |
1647 |
MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */ |
1648 |
MULTIPLY(tmp1 + tmp5, FIX(0.486914739)); /* (c8+c12)/2 */ |
1649 |
|
1650 |
dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS); |
1651 |
dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS); |
1652 |
|
1653 |
/* Odd part */ |
1654 |
|
1655 |
tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651)); /* c3 */ |
1656 |
tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945)); /* c5 */ |
1657 |
tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) + /* c7 */ |
1658 |
MULTIPLY(tmp14 + tmp15, FIX(0.338443458)); /* c11 */ |
1659 |
tmp0 = tmp1 + tmp2 + tmp3 - |
1660 |
MULTIPLY(tmp10, FIX(2.020082300)) + /* c3+c5+c7-c1 */ |
1661 |
MULTIPLY(tmp14, FIX(0.318774355)); /* c9-c11 */ |
1662 |
tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) - /* c7 */ |
1663 |
MULTIPLY(tmp11 + tmp12, FIX(0.338443458)); /* c11 */ |
1664 |
tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */ |
1665 |
tmp1 += tmp4 + tmp5 + |
1666 |
MULTIPLY(tmp11, FIX(0.837223564)) - /* c5+c9+c11-c3 */ |
1667 |
MULTIPLY(tmp14, FIX(2.341699410)); /* c1+c7 */ |
1668 |
tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */ |
1669 |
tmp2 += tmp4 + tmp6 - |
1670 |
MULTIPLY(tmp12, FIX(1.572116027)) + /* c1+c5-c9-c11 */ |
1671 |
MULTIPLY(tmp15, FIX(2.260109708)); /* c3+c7 */ |
1672 |
tmp3 += tmp5 + tmp6 + |
1673 |
MULTIPLY(tmp13, FIX(2.205608352)) - /* c3+c5+c9-c7 */ |
1674 |
MULTIPLY(tmp15, FIX(1.742345811)); /* c1+c11 */ |
1675 |
|
1676 |
dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); |
1677 |
dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); |
1678 |
dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); |
1679 |
dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); |
1680 |
|
1681 |
ctr++; |
1682 |
|
1683 |
if (ctr != DCTSIZE) { |
1684 |
if (ctr == 13) |
1685 |
break; /* Done. */ |
1686 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
1687 |
} else |
1688 |
dataptr = workspace; /* switch pointer to extended workspace */ |
1689 |
} |
1690 |
|
1691 |
/* Pass 2: process columns. |
1692 |
* We leave the results scaled up by an overall factor of 8. |
1693 |
* We must also scale the output by (8/13)**2 = 64/169, which we partially |
1694 |
* fold into the constant multipliers and final shifting: |
1695 |
* cK now represents sqrt(2) * cos(K*pi/26) * 128/169. |
1696 |
*/ |
1697 |
|
1698 |
dataptr = data; |
1699 |
wsptr = workspace; |
1700 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1701 |
/* Even part */ |
1702 |
|
1703 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4]; |
1704 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3]; |
1705 |
tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2]; |
1706 |
tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1]; |
1707 |
tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0]; |
1708 |
tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7]; |
1709 |
tmp6 = dataptr[DCTSIZE*6]; |
1710 |
|
1711 |
tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4]; |
1712 |
tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3]; |
1713 |
tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2]; |
1714 |
tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1]; |
1715 |
tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0]; |
1716 |
tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7]; |
1717 |
|
1718 |
dataptr[DCTSIZE*0] = (DCTELEM) |
1719 |
DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6, |
1720 |
FIX(0.757396450)), /* 128/169 */ |
1721 |
CONST_BITS+1); |
1722 |
tmp6 += tmp6; |
1723 |
tmp0 -= tmp6; |
1724 |
tmp1 -= tmp6; |
1725 |
tmp2 -= tmp6; |
1726 |
tmp3 -= tmp6; |
1727 |
tmp4 -= tmp6; |
1728 |
tmp5 -= tmp6; |
1729 |
dataptr[DCTSIZE*2] = (DCTELEM) |
1730 |
DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) + /* c2 */ |
1731 |
MULTIPLY(tmp1, FIX(0.801745081)) + /* c6 */ |
1732 |
MULTIPLY(tmp2, FIX(0.379824504)) - /* c10 */ |
1733 |
MULTIPLY(tmp3, FIX(0.129109289)) - /* c12 */ |
1734 |
MULTIPLY(tmp4, FIX(0.608465700)) - /* c8 */ |
1735 |
MULTIPLY(tmp5, FIX(0.948429952)), /* c4 */ |
1736 |
CONST_BITS+1); |
1737 |
z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */ |
1738 |
MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */ |
1739 |
MULTIPLY(tmp1 - tmp5, FIX(0.239678205)); /* (c8-c12)/2 */ |
1740 |
z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */ |
1741 |
MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */ |
1742 |
MULTIPLY(tmp1 + tmp5, FIX(0.368787494)); /* (c8+c12)/2 */ |
1743 |
|
1744 |
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1); |
1745 |
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1); |
1746 |
|
1747 |
/* Odd part */ |
1748 |
|
1749 |
tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908)); /* c3 */ |
1750 |
tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751)); /* c5 */ |
1751 |
tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) + /* c7 */ |
1752 |
MULTIPLY(tmp14 + tmp15, FIX(0.256335874)); /* c11 */ |
1753 |
tmp0 = tmp1 + tmp2 + tmp3 - |
1754 |
MULTIPLY(tmp10, FIX(1.530003162)) + /* c3+c5+c7-c1 */ |
1755 |
MULTIPLY(tmp14, FIX(0.241438564)); /* c9-c11 */ |
1756 |
tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) - /* c7 */ |
1757 |
MULTIPLY(tmp11 + tmp12, FIX(0.256335874)); /* c11 */ |
1758 |
tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */ |
1759 |
tmp1 += tmp4 + tmp5 + |
1760 |
MULTIPLY(tmp11, FIX(0.634110155)) - /* c5+c9+c11-c3 */ |
1761 |
MULTIPLY(tmp14, FIX(1.773594819)); /* c1+c7 */ |
1762 |
tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */ |
1763 |
tmp2 += tmp4 + tmp6 - |
1764 |
MULTIPLY(tmp12, FIX(1.190715098)) + /* c1+c5-c9-c11 */ |
1765 |
MULTIPLY(tmp15, FIX(1.711799069)); /* c3+c7 */ |
1766 |
tmp3 += tmp5 + tmp6 + |
1767 |
MULTIPLY(tmp13, FIX(1.670519935)) - /* c3+c5+c9-c7 */ |
1768 |
MULTIPLY(tmp15, FIX(1.319646532)); /* c1+c11 */ |
1769 |
|
1770 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1); |
1771 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1); |
1772 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1); |
1773 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1); |
1774 |
|
1775 |
dataptr++; /* advance pointer to next column */ |
1776 |
wsptr++; /* advance pointer to next column */ |
1777 |
} |
1778 |
} |
1779 |
|
1780 |
|
1781 |
/* |
1782 |
* Perform the forward DCT on a 14x14 sample block. |
1783 |
*/ |
1784 |
|
1785 |
GLOBAL(void) |
1786 |
jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1787 |
{ |
1788 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
1789 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
1790 |
DCTELEM workspace[8*6]; |
1791 |
DCTELEM *dataptr; |
1792 |
DCTELEM *wsptr; |
1793 |
JSAMPROW elemptr; |
1794 |
int ctr; |
1795 |
SHIFT_TEMPS |
1796 |
|
1797 |
/* Pass 1: process rows. */ |
1798 |
/* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
1799 |
/* cK represents sqrt(2) * cos(K*pi/28). */ |
1800 |
|
1801 |
dataptr = data; |
1802 |
ctr = 0; |
1803 |
for (;;) { |
1804 |
elemptr = sample_data[ctr] + start_col; |
1805 |
|
1806 |
/* Even part */ |
1807 |
|
1808 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); |
1809 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); |
1810 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); |
1811 |
tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); |
1812 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); |
1813 |
tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); |
1814 |
tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); |
1815 |
|
1816 |
tmp10 = tmp0 + tmp6; |
1817 |
tmp14 = tmp0 - tmp6; |
1818 |
tmp11 = tmp1 + tmp5; |
1819 |
tmp15 = tmp1 - tmp5; |
1820 |
tmp12 = tmp2 + tmp4; |
1821 |
tmp16 = tmp2 - tmp4; |
1822 |
|
1823 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); |
1824 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); |
1825 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); |
1826 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); |
1827 |
tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); |
1828 |
tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); |
1829 |
tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); |
1830 |
|
1831 |
/* Apply unsigned->signed conversion */ |
1832 |
dataptr[0] = (DCTELEM) |
1833 |
(tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE); |
1834 |
tmp13 += tmp13; |
1835 |
dataptr[4] = (DCTELEM) |
1836 |
DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ |
1837 |
MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ |
1838 |
MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ |
1839 |
CONST_BITS); |
1840 |
|
1841 |
tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ |
1842 |
|
1843 |
dataptr[2] = (DCTELEM) |
1844 |
DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ |
1845 |
+ MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ |
1846 |
CONST_BITS); |
1847 |
dataptr[6] = (DCTELEM) |
1848 |
DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ |
1849 |
- MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ |
1850 |
CONST_BITS); |
1851 |
|
1852 |
/* Odd part */ |
1853 |
|
1854 |
tmp10 = tmp1 + tmp2; |
1855 |
tmp11 = tmp5 - tmp4; |
1856 |
dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6); |
1857 |
tmp3 <<= CONST_BITS; |
1858 |
tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ |
1859 |
tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ |
1860 |
tmp10 += tmp11 - tmp3; |
1861 |
tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ |
1862 |
MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ |
1863 |
dataptr[5] = (DCTELEM) |
1864 |
DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ |
1865 |
+ MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ |
1866 |
CONST_BITS); |
1867 |
tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ |
1868 |
MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ |
1869 |
dataptr[3] = (DCTELEM) |
1870 |
DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ |
1871 |
- MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ |
1872 |
CONST_BITS); |
1873 |
dataptr[1] = (DCTELEM) |
1874 |
DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - |
1875 |
MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ |
1876 |
CONST_BITS); |
1877 |
|
1878 |
ctr++; |
1879 |
|
1880 |
if (ctr != DCTSIZE) { |
1881 |
if (ctr == 14) |
1882 |
break; /* Done. */ |
1883 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
1884 |
} else |
1885 |
dataptr = workspace; /* switch pointer to extended workspace */ |
1886 |
} |
1887 |
|
1888 |
/* Pass 2: process columns. |
1889 |
* We leave the results scaled up by an overall factor of 8. |
1890 |
* We must also scale the output by (8/14)**2 = 16/49, which we partially |
1891 |
* fold into the constant multipliers and final shifting: |
1892 |
* cK now represents sqrt(2) * cos(K*pi/28) * 32/49. |
1893 |
*/ |
1894 |
|
1895 |
dataptr = data; |
1896 |
wsptr = workspace; |
1897 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1898 |
/* Even part */ |
1899 |
|
1900 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; |
1901 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; |
1902 |
tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; |
1903 |
tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; |
1904 |
tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; |
1905 |
tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; |
1906 |
tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; |
1907 |
|
1908 |
tmp10 = tmp0 + tmp6; |
1909 |
tmp14 = tmp0 - tmp6; |
1910 |
tmp11 = tmp1 + tmp5; |
1911 |
tmp15 = tmp1 - tmp5; |
1912 |
tmp12 = tmp2 + tmp4; |
1913 |
tmp16 = tmp2 - tmp4; |
1914 |
|
1915 |
tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; |
1916 |
tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; |
1917 |
tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; |
1918 |
tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; |
1919 |
tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; |
1920 |
tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; |
1921 |
tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; |
1922 |
|
1923 |
dataptr[DCTSIZE*0] = (DCTELEM) |
1924 |
DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, |
1925 |
FIX(0.653061224)), /* 32/49 */ |
1926 |
CONST_BITS+1); |
1927 |
tmp13 += tmp13; |
1928 |
dataptr[DCTSIZE*4] = (DCTELEM) |
1929 |
DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ |
1930 |
MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ |
1931 |
MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ |
1932 |
CONST_BITS+1); |
1933 |
|
1934 |
tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ |
1935 |
|
1936 |
dataptr[DCTSIZE*2] = (DCTELEM) |
1937 |
DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ |
1938 |
+ MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ |
1939 |
CONST_BITS+1); |
1940 |
dataptr[DCTSIZE*6] = (DCTELEM) |
1941 |
DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ |
1942 |
- MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ |
1943 |
CONST_BITS+1); |
1944 |
|
1945 |
/* Odd part */ |
1946 |
|
1947 |
tmp10 = tmp1 + tmp2; |
1948 |
tmp11 = tmp5 - tmp4; |
1949 |
dataptr[DCTSIZE*7] = (DCTELEM) |
1950 |
DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, |
1951 |
FIX(0.653061224)), /* 32/49 */ |
1952 |
CONST_BITS+1); |
1953 |
tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ |
1954 |
tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ |
1955 |
tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ |
1956 |
tmp10 += tmp11 - tmp3; |
1957 |
tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ |
1958 |
MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ |
1959 |
dataptr[DCTSIZE*5] = (DCTELEM) |
1960 |
DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ |
1961 |
+ MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ |
1962 |
CONST_BITS+1); |
1963 |
tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ |
1964 |
MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ |
1965 |
dataptr[DCTSIZE*3] = (DCTELEM) |
1966 |
DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ |
1967 |
- MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ |
1968 |
CONST_BITS+1); |
1969 |
dataptr[DCTSIZE*1] = (DCTELEM) |
1970 |
DESCALE(tmp11 + tmp12 + tmp3 |
1971 |
- MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ |
1972 |
- MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ |
1973 |
CONST_BITS+1); |
1974 |
|
1975 |
dataptr++; /* advance pointer to next column */ |
1976 |
wsptr++; /* advance pointer to next column */ |
1977 |
} |
1978 |
} |
1979 |
|
1980 |
|
1981 |
/* |
1982 |
* Perform the forward DCT on a 15x15 sample block. |
1983 |
*/ |
1984 |
|
1985 |
GLOBAL(void) |
1986 |
jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1987 |
{ |
1988 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
1989 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
1990 |
INT32 z1, z2, z3; |
1991 |
DCTELEM workspace[8*7]; |
1992 |
DCTELEM *dataptr; |
1993 |
DCTELEM *wsptr; |
1994 |
JSAMPROW elemptr; |
1995 |
int ctr; |
1996 |
SHIFT_TEMPS |
1997 |
|
1998 |
/* Pass 1: process rows. */ |
1999 |
/* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
2000 |
/* cK represents sqrt(2) * cos(K*pi/30). */ |
2001 |
|
2002 |
dataptr = data; |
2003 |
ctr = 0; |
2004 |
for (;;) { |
2005 |
elemptr = sample_data[ctr] + start_col; |
2006 |
|
2007 |
/* Even part */ |
2008 |
|
2009 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]); |
2010 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]); |
2011 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]); |
2012 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]); |
2013 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]); |
2014 |
tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]); |
2015 |
tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]); |
2016 |
tmp7 = GETJSAMPLE(elemptr[7]); |
2017 |
|
2018 |
tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]); |
2019 |
tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]); |
2020 |
tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]); |
2021 |
tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]); |
2022 |
tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]); |
2023 |
tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]); |
2024 |
tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]); |
2025 |
|
2026 |
z1 = tmp0 + tmp4 + tmp5; |
2027 |
z2 = tmp1 + tmp3 + tmp6; |
2028 |
z3 = tmp2 + tmp7; |
2029 |
/* Apply unsigned->signed conversion */ |
2030 |
dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE); |
2031 |
z3 += z3; |
2032 |
dataptr[6] = (DCTELEM) |
2033 |
DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */ |
2034 |
MULTIPLY(z2 - z3, FIX(0.437016024)), /* c12 */ |
2035 |
CONST_BITS); |
2036 |
tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; |
2037 |
z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) - /* c2+c14 */ |
2038 |
MULTIPLY(tmp6 - tmp2, FIX(2.238241955)); /* c4+c8 */ |
2039 |
z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) - /* c8-c14 */ |
2040 |
MULTIPLY(tmp0 - tmp2, FIX(0.091361227)); /* c2-c4 */ |
2041 |
z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) + /* c2 */ |
2042 |
MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) + /* c8 */ |
2043 |
MULTIPLY(tmp1 - tmp4, FIX(0.790569415)); /* (c6+c12)/2 */ |
2044 |
|
2045 |
dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS); |
2046 |
dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS); |
2047 |
|
2048 |
/* Odd part */ |
2049 |
|
2050 |
tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, |
2051 |
FIX(1.224744871)); /* c5 */ |
2052 |
tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */ |
2053 |
MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876)); /* c9 */ |
2054 |
tmp12 = MULTIPLY(tmp12, FIX(1.224744871)); /* c5 */ |
2055 |
tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) + /* c1 */ |
2056 |
MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) + /* c3 */ |
2057 |
MULTIPLY(tmp13 + tmp15, FIX(0.575212477)); /* c11 */ |
2058 |
tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) - /* c7-c11 */ |
2059 |
MULTIPLY(tmp14, FIX(0.513743148)) + /* c3-c9 */ |
2060 |
MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12; /* c1+c13 */ |
2061 |
tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) - /* -(c1-c7) */ |
2062 |
MULTIPLY(tmp11, FIX(2.176250899)) - /* c3+c9 */ |
2063 |
MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12; /* c11+c13 */ |
2064 |
|
2065 |
dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); |
2066 |
dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); |
2067 |
dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); |
2068 |
dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); |
2069 |
|
2070 |
ctr++; |
2071 |
|
2072 |
if (ctr != DCTSIZE) { |
2073 |
if (ctr == 15) |
2074 |
break; /* Done. */ |
2075 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
2076 |
} else |
2077 |
dataptr = workspace; /* switch pointer to extended workspace */ |
2078 |
} |
2079 |
|
2080 |
/* Pass 2: process columns. |
2081 |
* We leave the results scaled up by an overall factor of 8. |
2082 |
* We must also scale the output by (8/15)**2 = 64/225, which we partially |
2083 |
* fold into the constant multipliers and final shifting: |
2084 |
* cK now represents sqrt(2) * cos(K*pi/30) * 256/225. |
2085 |
*/ |
2086 |
|
2087 |
dataptr = data; |
2088 |
wsptr = workspace; |
2089 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2090 |
/* Even part */ |
2091 |
|
2092 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6]; |
2093 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5]; |
2094 |
tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4]; |
2095 |
tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3]; |
2096 |
tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2]; |
2097 |
tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1]; |
2098 |
tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0]; |
2099 |
tmp7 = dataptr[DCTSIZE*7]; |
2100 |
|
2101 |
tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6]; |
2102 |
tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5]; |
2103 |
tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4]; |
2104 |
tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3]; |
2105 |
tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2]; |
2106 |
tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1]; |
2107 |
tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0]; |
2108 |
|
2109 |
z1 = tmp0 + tmp4 + tmp5; |
2110 |
z2 = tmp1 + tmp3 + tmp6; |
2111 |
z3 = tmp2 + tmp7; |
2112 |
dataptr[DCTSIZE*0] = (DCTELEM) |
2113 |
DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */ |
2114 |
CONST_BITS+2); |
2115 |
z3 += z3; |
2116 |
dataptr[DCTSIZE*6] = (DCTELEM) |
2117 |
DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */ |
2118 |
MULTIPLY(z2 - z3, FIX(0.497227121)), /* c12 */ |
2119 |
CONST_BITS+2); |
2120 |
tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; |
2121 |
z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) - /* c2+c14 */ |
2122 |
MULTIPLY(tmp6 - tmp2, FIX(2.546621957)); /* c4+c8 */ |
2123 |
z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) - /* c8-c14 */ |
2124 |
MULTIPLY(tmp0 - tmp2, FIX(0.103948774)); /* c2-c4 */ |
2125 |
z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) + /* c2 */ |
2126 |
MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) + /* c8 */ |
2127 |
MULTIPLY(tmp1 - tmp4, FIX(0.899492312)); /* (c6+c12)/2 */ |
2128 |
|
2129 |
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2); |
2130 |
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2); |
2131 |
|
2132 |
/* Odd part */ |
2133 |
|
2134 |
tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, |
2135 |
FIX(1.393487498)); /* c5 */ |
2136 |
tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */ |
2137 |
MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187)); /* c9 */ |
2138 |
tmp12 = MULTIPLY(tmp12, FIX(1.393487498)); /* c5 */ |
2139 |
tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) + /* c1 */ |
2140 |
MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) + /* c3 */ |
2141 |
MULTIPLY(tmp13 + tmp15, FIX(0.654463974)); /* c11 */ |
2142 |
tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) - /* c7-c11 */ |
2143 |
MULTIPLY(tmp14, FIX(0.584525538)) + /* c3-c9 */ |
2144 |
MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12; /* c1+c13 */ |
2145 |
tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) - /* -(c1-c7) */ |
2146 |
MULTIPLY(tmp11, FIX(2.476089912)) - /* c3+c9 */ |
2147 |
MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12; /* c11+c13 */ |
2148 |
|
2149 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); |
2150 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); |
2151 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); |
2152 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); |
2153 |
|
2154 |
dataptr++; /* advance pointer to next column */ |
2155 |
wsptr++; /* advance pointer to next column */ |
2156 |
} |
2157 |
} |
2158 |
|
2159 |
|
2160 |
/* |
2161 |
* Perform the forward DCT on a 16x16 sample block. |
2162 |
*/ |
2163 |
|
2164 |
GLOBAL(void) |
2165 |
jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2166 |
{ |
2167 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
2168 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; |
2169 |
DCTELEM workspace[DCTSIZE2]; |
2170 |
DCTELEM *dataptr; |
2171 |
DCTELEM *wsptr; |
2172 |
JSAMPROW elemptr; |
2173 |
int ctr; |
2174 |
SHIFT_TEMPS |
2175 |
|
2176 |
/* Pass 1: process rows. */ |
2177 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2178 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
2179 |
/* cK represents sqrt(2) * cos(K*pi/32). */ |
2180 |
|
2181 |
dataptr = data; |
2182 |
ctr = 0; |
2183 |
for (;;) { |
2184 |
elemptr = sample_data[ctr] + start_col; |
2185 |
|
2186 |
/* Even part */ |
2187 |
|
2188 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); |
2189 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); |
2190 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); |
2191 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); |
2192 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); |
2193 |
tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); |
2194 |
tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); |
2195 |
tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); |
2196 |
|
2197 |
tmp10 = tmp0 + tmp7; |
2198 |
tmp14 = tmp0 - tmp7; |
2199 |
tmp11 = tmp1 + tmp6; |
2200 |
tmp15 = tmp1 - tmp6; |
2201 |
tmp12 = tmp2 + tmp5; |
2202 |
tmp16 = tmp2 - tmp5; |
2203 |
tmp13 = tmp3 + tmp4; |
2204 |
tmp17 = tmp3 - tmp4; |
2205 |
|
2206 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); |
2207 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); |
2208 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); |
2209 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); |
2210 |
tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); |
2211 |
tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); |
2212 |
tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); |
2213 |
tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); |
2214 |
|
2215 |
/* Apply unsigned->signed conversion */ |
2216 |
dataptr[0] = (DCTELEM) |
2217 |
((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); |
2218 |
dataptr[4] = (DCTELEM) |
2219 |
DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
2220 |
MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
2221 |
CONST_BITS-PASS1_BITS); |
2222 |
|
2223 |
tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
2224 |
MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
2225 |
|
2226 |
dataptr[2] = (DCTELEM) |
2227 |
DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
2228 |
+ MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ |
2229 |
CONST_BITS-PASS1_BITS); |
2230 |
dataptr[6] = (DCTELEM) |
2231 |
DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
2232 |
- MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
2233 |
CONST_BITS-PASS1_BITS); |
2234 |
|
2235 |
/* Odd part */ |
2236 |
|
2237 |
tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
2238 |
MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
2239 |
tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
2240 |
MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
2241 |
tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
2242 |
MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
2243 |
tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
2244 |
MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
2245 |
tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
2246 |
MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
2247 |
tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
2248 |
MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
2249 |
tmp10 = tmp11 + tmp12 + tmp13 - |
2250 |
MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
2251 |
MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
2252 |
tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
2253 |
- MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
2254 |
tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
2255 |
+ MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
2256 |
tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
2257 |
+ MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
2258 |
|
2259 |
dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); |
2260 |
dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); |
2261 |
dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); |
2262 |
dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); |
2263 |
|
2264 |
ctr++; |
2265 |
|
2266 |
if (ctr != DCTSIZE) { |
2267 |
if (ctr == DCTSIZE * 2) |
2268 |
break; /* Done. */ |
2269 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
2270 |
} else |
2271 |
dataptr = workspace; /* switch pointer to extended workspace */ |
2272 |
} |
2273 |
|
2274 |
/* Pass 2: process columns. |
2275 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
2276 |
* by an overall factor of 8. |
2277 |
* We must also scale the output by (8/16)**2 = 1/2**2. |
2278 |
*/ |
2279 |
|
2280 |
dataptr = data; |
2281 |
wsptr = workspace; |
2282 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2283 |
/* Even part */ |
2284 |
|
2285 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; |
2286 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; |
2287 |
tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; |
2288 |
tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; |
2289 |
tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; |
2290 |
tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; |
2291 |
tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; |
2292 |
tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; |
2293 |
|
2294 |
tmp10 = tmp0 + tmp7; |
2295 |
tmp14 = tmp0 - tmp7; |
2296 |
tmp11 = tmp1 + tmp6; |
2297 |
tmp15 = tmp1 - tmp6; |
2298 |
tmp12 = tmp2 + tmp5; |
2299 |
tmp16 = tmp2 - tmp5; |
2300 |
tmp13 = tmp3 + tmp4; |
2301 |
tmp17 = tmp3 - tmp4; |
2302 |
|
2303 |
tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; |
2304 |
tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; |
2305 |
tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; |
2306 |
tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; |
2307 |
tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; |
2308 |
tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; |
2309 |
tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; |
2310 |
tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; |
2311 |
|
2312 |
dataptr[DCTSIZE*0] = (DCTELEM) |
2313 |
DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2); |
2314 |
dataptr[DCTSIZE*4] = (DCTELEM) |
2315 |
DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
2316 |
MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
2317 |
CONST_BITS+PASS1_BITS+2); |
2318 |
|
2319 |
tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
2320 |
MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
2321 |
|
2322 |
dataptr[DCTSIZE*2] = (DCTELEM) |
2323 |
DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
2324 |
+ MULTIPLY(tmp16, FIX(2.172734804)), /* c2+10 */ |
2325 |
CONST_BITS+PASS1_BITS+2); |
2326 |
dataptr[DCTSIZE*6] = (DCTELEM) |
2327 |
DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
2328 |
- MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
2329 |
CONST_BITS+PASS1_BITS+2); |
2330 |
|
2331 |
/* Odd part */ |
2332 |
|
2333 |
tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
2334 |
MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
2335 |
tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
2336 |
MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
2337 |
tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
2338 |
MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
2339 |
tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
2340 |
MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
2341 |
tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
2342 |
MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
2343 |
tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
2344 |
MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
2345 |
tmp10 = tmp11 + tmp12 + tmp13 - |
2346 |
MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
2347 |
MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
2348 |
tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
2349 |
- MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
2350 |
tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
2351 |
+ MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
2352 |
tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
2353 |
+ MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
2354 |
|
2355 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2); |
2356 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2); |
2357 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2); |
2358 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2); |
2359 |
|
2360 |
dataptr++; /* advance pointer to next column */ |
2361 |
wsptr++; /* advance pointer to next column */ |
2362 |
} |
2363 |
} |
2364 |
|
2365 |
|
2366 |
/* |
2367 |
* Perform the forward DCT on a 16x8 sample block. |
2368 |
* |
2369 |
* 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). |
2370 |
*/ |
2371 |
|
2372 |
GLOBAL(void) |
2373 |
jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2374 |
{ |
2375 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
2376 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; |
2377 |
INT32 z1; |
2378 |
DCTELEM *dataptr; |
2379 |
JSAMPROW elemptr; |
2380 |
int ctr; |
2381 |
SHIFT_TEMPS |
2382 |
|
2383 |
/* Pass 1: process rows. */ |
2384 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2385 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
2386 |
/* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */ |
2387 |
|
2388 |
dataptr = data; |
2389 |
ctr = 0; |
2390 |
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
2391 |
elemptr = sample_data[ctr] + start_col; |
2392 |
|
2393 |
/* Even part */ |
2394 |
|
2395 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); |
2396 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); |
2397 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); |
2398 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); |
2399 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); |
2400 |
tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); |
2401 |
tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); |
2402 |
tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); |
2403 |
|
2404 |
tmp10 = tmp0 + tmp7; |
2405 |
tmp14 = tmp0 - tmp7; |
2406 |
tmp11 = tmp1 + tmp6; |
2407 |
tmp15 = tmp1 - tmp6; |
2408 |
tmp12 = tmp2 + tmp5; |
2409 |
tmp16 = tmp2 - tmp5; |
2410 |
tmp13 = tmp3 + tmp4; |
2411 |
tmp17 = tmp3 - tmp4; |
2412 |
|
2413 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); |
2414 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); |
2415 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); |
2416 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); |
2417 |
tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); |
2418 |
tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); |
2419 |
tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); |
2420 |
tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); |
2421 |
|
2422 |
/* Apply unsigned->signed conversion */ |
2423 |
dataptr[0] = (DCTELEM) |
2424 |
((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); |
2425 |
dataptr[4] = (DCTELEM) |
2426 |
DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
2427 |
MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
2428 |
CONST_BITS-PASS1_BITS); |
2429 |
|
2430 |
tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
2431 |
MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
2432 |
|
2433 |
dataptr[2] = (DCTELEM) |
2434 |
DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
2435 |
+ MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ |
2436 |
CONST_BITS-PASS1_BITS); |
2437 |
dataptr[6] = (DCTELEM) |
2438 |
DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
2439 |
- MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
2440 |
CONST_BITS-PASS1_BITS); |
2441 |
|
2442 |
/* Odd part */ |
2443 |
|
2444 |
tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
2445 |
MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
2446 |
tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
2447 |
MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
2448 |
tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
2449 |
MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
2450 |
tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
2451 |
MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
2452 |
tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
2453 |
MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
2454 |
tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
2455 |
MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
2456 |
tmp10 = tmp11 + tmp12 + tmp13 - |
2457 |
MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
2458 |
MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
2459 |
tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
2460 |
- MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
2461 |
tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
2462 |
+ MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
2463 |
tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
2464 |
+ MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
2465 |
|
2466 |
dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); |
2467 |
dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); |
2468 |
dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); |
2469 |
dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); |
2470 |
|
2471 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
2472 |
} |
2473 |
|
2474 |
/* Pass 2: process columns. |
2475 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
2476 |
* by an overall factor of 8. |
2477 |
* We must also scale the output by 8/16 = 1/2. |
2478 |
*/ |
2479 |
|
2480 |
dataptr = data; |
2481 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2482 |
/* Even part per LL&M figure 1 --- note that published figure is faulty; |
2483 |
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
2484 |
*/ |
2485 |
|
2486 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
2487 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
2488 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
2489 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
2490 |
|
2491 |
tmp10 = tmp0 + tmp3; |
2492 |
tmp12 = tmp0 - tmp3; |
2493 |
tmp11 = tmp1 + tmp2; |
2494 |
tmp13 = tmp1 - tmp2; |
2495 |
|
2496 |
tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
2497 |
tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
2498 |
tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
2499 |
tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
2500 |
|
2501 |
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1); |
2502 |
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1); |
2503 |
|
2504 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
2505 |
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
2506 |
CONST_BITS+PASS1_BITS+1); |
2507 |
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
2508 |
CONST_BITS+PASS1_BITS+1); |
2509 |
|
2510 |
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
2511 |
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
2512 |
* i0..i3 in the paper are tmp0..tmp3 here. |
2513 |
*/ |
2514 |
|
2515 |
tmp10 = tmp0 + tmp3; |
2516 |
tmp11 = tmp1 + tmp2; |
2517 |
tmp12 = tmp0 + tmp2; |
2518 |
tmp13 = tmp1 + tmp3; |
2519 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
2520 |
|
2521 |
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
2522 |
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
2523 |
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
2524 |
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
2525 |
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
2526 |
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
2527 |
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
2528 |
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
2529 |
|
2530 |
tmp12 += z1; |
2531 |
tmp13 += z1; |
2532 |
|
2533 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, |
2534 |
CONST_BITS+PASS1_BITS+1); |
2535 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, |
2536 |
CONST_BITS+PASS1_BITS+1); |
2537 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, |
2538 |
CONST_BITS+PASS1_BITS+1); |
2539 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, |
2540 |
CONST_BITS+PASS1_BITS+1); |
2541 |
|
2542 |
dataptr++; /* advance pointer to next column */ |
2543 |
} |
2544 |
} |
2545 |
|
2546 |
|
2547 |
/* |
2548 |
* Perform the forward DCT on a 14x7 sample block. |
2549 |
* |
2550 |
* 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns). |
2551 |
*/ |
2552 |
|
2553 |
GLOBAL(void) |
2554 |
jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2555 |
{ |
2556 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
2557 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
2558 |
INT32 z1, z2, z3; |
2559 |
DCTELEM *dataptr; |
2560 |
JSAMPROW elemptr; |
2561 |
int ctr; |
2562 |
SHIFT_TEMPS |
2563 |
|
2564 |
/* Zero bottom row of output coefficient block. */ |
2565 |
MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE); |
2566 |
|
2567 |
/* Pass 1: process rows. */ |
2568 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2569 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
2570 |
/* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */ |
2571 |
|
2572 |
dataptr = data; |
2573 |
for (ctr = 0; ctr < 7; ctr++) { |
2574 |
elemptr = sample_data[ctr] + start_col; |
2575 |
|
2576 |
/* Even part */ |
2577 |
|
2578 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); |
2579 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); |
2580 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); |
2581 |
tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); |
2582 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); |
2583 |
tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); |
2584 |
tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); |
2585 |
|
2586 |
tmp10 = tmp0 + tmp6; |
2587 |
tmp14 = tmp0 - tmp6; |
2588 |
tmp11 = tmp1 + tmp5; |
2589 |
tmp15 = tmp1 - tmp5; |
2590 |
tmp12 = tmp2 + tmp4; |
2591 |
tmp16 = tmp2 - tmp4; |
2592 |
|
2593 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); |
2594 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); |
2595 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); |
2596 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); |
2597 |
tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); |
2598 |
tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); |
2599 |
tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); |
2600 |
|
2601 |
/* Apply unsigned->signed conversion */ |
2602 |
dataptr[0] = (DCTELEM) |
2603 |
((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS); |
2604 |
tmp13 += tmp13; |
2605 |
dataptr[4] = (DCTELEM) |
2606 |
DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ |
2607 |
MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ |
2608 |
MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ |
2609 |
CONST_BITS-PASS1_BITS); |
2610 |
|
2611 |
tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ |
2612 |
|
2613 |
dataptr[2] = (DCTELEM) |
2614 |
DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ |
2615 |
+ MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ |
2616 |
CONST_BITS-PASS1_BITS); |
2617 |
dataptr[6] = (DCTELEM) |
2618 |
DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ |
2619 |
- MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ |
2620 |
CONST_BITS-PASS1_BITS); |
2621 |
|
2622 |
/* Odd part */ |
2623 |
|
2624 |
tmp10 = tmp1 + tmp2; |
2625 |
tmp11 = tmp5 - tmp4; |
2626 |
dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS); |
2627 |
tmp3 <<= CONST_BITS; |
2628 |
tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ |
2629 |
tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ |
2630 |
tmp10 += tmp11 - tmp3; |
2631 |
tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ |
2632 |
MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ |
2633 |
dataptr[5] = (DCTELEM) |
2634 |
DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ |
2635 |
+ MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ |
2636 |
CONST_BITS-PASS1_BITS); |
2637 |
tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ |
2638 |
MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ |
2639 |
dataptr[3] = (DCTELEM) |
2640 |
DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ |
2641 |
- MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ |
2642 |
CONST_BITS-PASS1_BITS); |
2643 |
dataptr[1] = (DCTELEM) |
2644 |
DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - |
2645 |
MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ |
2646 |
CONST_BITS-PASS1_BITS); |
2647 |
|
2648 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
2649 |
} |
2650 |
|
2651 |
/* Pass 2: process columns. |
2652 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
2653 |
* by an overall factor of 8. |
2654 |
* We must also scale the output by (8/14)*(8/7) = 32/49, which we |
2655 |
* partially fold into the constant multipliers and final shifting: |
2656 |
* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49. |
2657 |
*/ |
2658 |
|
2659 |
dataptr = data; |
2660 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2661 |
/* Even part */ |
2662 |
|
2663 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; |
2664 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; |
2665 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; |
2666 |
tmp3 = dataptr[DCTSIZE*3]; |
2667 |
|
2668 |
tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; |
2669 |
tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; |
2670 |
tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; |
2671 |
|
2672 |
z1 = tmp0 + tmp2; |
2673 |
dataptr[DCTSIZE*0] = (DCTELEM) |
2674 |
DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ |
2675 |
CONST_BITS+PASS1_BITS+1); |
2676 |
tmp3 += tmp3; |
2677 |
z1 -= tmp3; |
2678 |
z1 -= tmp3; |
2679 |
z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ |
2680 |
z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ |
2681 |
z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ |
2682 |
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1); |
2683 |
z1 -= z2; |
2684 |
z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ |
2685 |
dataptr[DCTSIZE*4] = (DCTELEM) |
2686 |
DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ |
2687 |
CONST_BITS+PASS1_BITS+1); |
2688 |
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1); |
2689 |
|
2690 |
/* Odd part */ |
2691 |
|
2692 |
tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ |
2693 |
tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ |
2694 |
tmp0 = tmp1 - tmp2; |
2695 |
tmp1 += tmp2; |
2696 |
tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ |
2697 |
tmp1 += tmp2; |
2698 |
tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ |
2699 |
tmp0 += tmp3; |
2700 |
tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ |
2701 |
|
2702 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1); |
2703 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1); |
2704 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1); |
2705 |
|
2706 |
dataptr++; /* advance pointer to next column */ |
2707 |
} |
2708 |
} |
2709 |
|
2710 |
|
2711 |
/* |
2712 |
* Perform the forward DCT on a 12x6 sample block. |
2713 |
* |
2714 |
* 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). |
2715 |
*/ |
2716 |
|
2717 |
GLOBAL(void) |
2718 |
jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2719 |
{ |
2720 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
2721 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
2722 |
DCTELEM *dataptr; |
2723 |
JSAMPROW elemptr; |
2724 |
int ctr; |
2725 |
SHIFT_TEMPS |
2726 |
|
2727 |
/* Zero 2 bottom rows of output coefficient block. */ |
2728 |
MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2); |
2729 |
|
2730 |
/* Pass 1: process rows. */ |
2731 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2732 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
2733 |
/* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */ |
2734 |
|
2735 |
dataptr = data; |
2736 |
for (ctr = 0; ctr < 6; ctr++) { |
2737 |
elemptr = sample_data[ctr] + start_col; |
2738 |
|
2739 |
/* Even part */ |
2740 |
|
2741 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); |
2742 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); |
2743 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); |
2744 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); |
2745 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); |
2746 |
tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); |
2747 |
|
2748 |
tmp10 = tmp0 + tmp5; |
2749 |
tmp13 = tmp0 - tmp5; |
2750 |
tmp11 = tmp1 + tmp4; |
2751 |
tmp14 = tmp1 - tmp4; |
2752 |
tmp12 = tmp2 + tmp3; |
2753 |
tmp15 = tmp2 - tmp3; |
2754 |
|
2755 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); |
2756 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); |
2757 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); |
2758 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); |
2759 |
tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); |
2760 |
tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); |
2761 |
|
2762 |
/* Apply unsigned->signed conversion */ |
2763 |
dataptr[0] = (DCTELEM) |
2764 |
((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS); |
2765 |
dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS); |
2766 |
dataptr[4] = (DCTELEM) |
2767 |
DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ |
2768 |
CONST_BITS-PASS1_BITS); |
2769 |
dataptr[2] = (DCTELEM) |
2770 |
DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ |
2771 |
CONST_BITS-PASS1_BITS); |
2772 |
|
2773 |
/* Odd part */ |
2774 |
|
2775 |
tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ |
2776 |
tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ |
2777 |
tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ |
2778 |
tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ |
2779 |
tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ |
2780 |
tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ |
2781 |
+ MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ |
2782 |
tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ |
2783 |
tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ |
2784 |
+ MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ |
2785 |
tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ |
2786 |
- MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ |
2787 |
tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ |
2788 |
- MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ |
2789 |
|
2790 |
dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); |
2791 |
dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); |
2792 |
dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); |
2793 |
dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); |
2794 |
|
2795 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
2796 |
} |
2797 |
|
2798 |
/* Pass 2: process columns. |
2799 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
2800 |
* by an overall factor of 8. |
2801 |
* We must also scale the output by (8/12)*(8/6) = 8/9, which we |
2802 |
* partially fold into the constant multipliers and final shifting: |
2803 |
* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. |
2804 |
*/ |
2805 |
|
2806 |
dataptr = data; |
2807 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2808 |
/* Even part */ |
2809 |
|
2810 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; |
2811 |
tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; |
2812 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
2813 |
|
2814 |
tmp10 = tmp0 + tmp2; |
2815 |
tmp12 = tmp0 - tmp2; |
2816 |
|
2817 |
tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; |
2818 |
tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; |
2819 |
tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
2820 |
|
2821 |
dataptr[DCTSIZE*0] = (DCTELEM) |
2822 |
DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ |
2823 |
CONST_BITS+PASS1_BITS+1); |
2824 |
dataptr[DCTSIZE*2] = (DCTELEM) |
2825 |
DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ |
2826 |
CONST_BITS+PASS1_BITS+1); |
2827 |
dataptr[DCTSIZE*4] = (DCTELEM) |
2828 |
DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ |
2829 |
CONST_BITS+PASS1_BITS+1); |
2830 |
|
2831 |
/* Odd part */ |
2832 |
|
2833 |
tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ |
2834 |
|
2835 |
dataptr[DCTSIZE*1] = (DCTELEM) |
2836 |
DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
2837 |
CONST_BITS+PASS1_BITS+1); |
2838 |
dataptr[DCTSIZE*3] = (DCTELEM) |
2839 |
DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ |
2840 |
CONST_BITS+PASS1_BITS+1); |
2841 |
dataptr[DCTSIZE*5] = (DCTELEM) |
2842 |
DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ |
2843 |
CONST_BITS+PASS1_BITS+1); |
2844 |
|
2845 |
dataptr++; /* advance pointer to next column */ |
2846 |
} |
2847 |
} |
2848 |
|
2849 |
|
2850 |
/* |
2851 |
* Perform the forward DCT on a 10x5 sample block. |
2852 |
* |
2853 |
* 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns). |
2854 |
*/ |
2855 |
|
2856 |
GLOBAL(void) |
2857 |
jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2858 |
{ |
2859 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
2860 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
2861 |
DCTELEM *dataptr; |
2862 |
JSAMPROW elemptr; |
2863 |
int ctr; |
2864 |
SHIFT_TEMPS |
2865 |
|
2866 |
/* Zero 3 bottom rows of output coefficient block. */ |
2867 |
MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3); |
2868 |
|
2869 |
/* Pass 1: process rows. */ |
2870 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2871 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
2872 |
/* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */ |
2873 |
|
2874 |
dataptr = data; |
2875 |
for (ctr = 0; ctr < 5; ctr++) { |
2876 |
elemptr = sample_data[ctr] + start_col; |
2877 |
|
2878 |
/* Even part */ |
2879 |
|
2880 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); |
2881 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); |
2882 |
tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); |
2883 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); |
2884 |
tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); |
2885 |
|
2886 |
tmp10 = tmp0 + tmp4; |
2887 |
tmp13 = tmp0 - tmp4; |
2888 |
tmp11 = tmp1 + tmp3; |
2889 |
tmp14 = tmp1 - tmp3; |
2890 |
|
2891 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); |
2892 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); |
2893 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); |
2894 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); |
2895 |
tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); |
2896 |
|
2897 |
/* Apply unsigned->signed conversion */ |
2898 |
dataptr[0] = (DCTELEM) |
2899 |
((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS); |
2900 |
tmp12 += tmp12; |
2901 |
dataptr[4] = (DCTELEM) |
2902 |
DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ |
2903 |
MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ |
2904 |
CONST_BITS-PASS1_BITS); |
2905 |
tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ |
2906 |
dataptr[2] = (DCTELEM) |
2907 |
DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ |
2908 |
CONST_BITS-PASS1_BITS); |
2909 |
dataptr[6] = (DCTELEM) |
2910 |
DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ |
2911 |
CONST_BITS-PASS1_BITS); |
2912 |
|
2913 |
/* Odd part */ |
2914 |
|
2915 |
tmp10 = tmp0 + tmp4; |
2916 |
tmp11 = tmp1 - tmp3; |
2917 |
dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS); |
2918 |
tmp2 <<= CONST_BITS; |
2919 |
dataptr[1] = (DCTELEM) |
2920 |
DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ |
2921 |
MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ |
2922 |
MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ |
2923 |
MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ |
2924 |
CONST_BITS-PASS1_BITS); |
2925 |
tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ |
2926 |
MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ |
2927 |
tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ |
2928 |
(tmp11 << (CONST_BITS - 1)) - tmp2; |
2929 |
dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS); |
2930 |
dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS); |
2931 |
|
2932 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
2933 |
} |
2934 |
|
2935 |
/* Pass 2: process columns. |
2936 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
2937 |
* by an overall factor of 8. |
2938 |
* We must also scale the output by (8/10)*(8/5) = 32/25, which we |
2939 |
* fold into the constant multipliers: |
2940 |
* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25. |
2941 |
*/ |
2942 |
|
2943 |
dataptr = data; |
2944 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2945 |
/* Even part */ |
2946 |
|
2947 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; |
2948 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; |
2949 |
tmp2 = dataptr[DCTSIZE*2]; |
2950 |
|
2951 |
tmp10 = tmp0 + tmp1; |
2952 |
tmp11 = tmp0 - tmp1; |
2953 |
|
2954 |
tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; |
2955 |
tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; |
2956 |
|
2957 |
dataptr[DCTSIZE*0] = (DCTELEM) |
2958 |
DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ |
2959 |
CONST_BITS+PASS1_BITS); |
2960 |
tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ |
2961 |
tmp10 -= tmp2 << 2; |
2962 |
tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ |
2963 |
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); |
2964 |
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); |
2965 |
|
2966 |
/* Odd part */ |
2967 |
|
2968 |
tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ |
2969 |
|
2970 |
dataptr[DCTSIZE*1] = (DCTELEM) |
2971 |
DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ |
2972 |
CONST_BITS+PASS1_BITS); |
2973 |
dataptr[DCTSIZE*3] = (DCTELEM) |
2974 |
DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ |
2975 |
CONST_BITS+PASS1_BITS); |
2976 |
|
2977 |
dataptr++; /* advance pointer to next column */ |
2978 |
} |
2979 |
} |
2980 |
|
2981 |
|
2982 |
/* |
2983 |
* Perform the forward DCT on an 8x4 sample block. |
2984 |
* |
2985 |
* 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). |
2986 |
*/ |
2987 |
|
2988 |
GLOBAL(void) |
2989 |
jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2990 |
{ |
2991 |
INT32 tmp0, tmp1, tmp2, tmp3; |
2992 |
INT32 tmp10, tmp11, tmp12, tmp13; |
2993 |
INT32 z1; |
2994 |
DCTELEM *dataptr; |
2995 |
JSAMPROW elemptr; |
2996 |
int ctr; |
2997 |
SHIFT_TEMPS |
2998 |
|
2999 |
/* Zero 4 bottom rows of output coefficient block. */ |
3000 |
MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4); |
3001 |
|
3002 |
/* Pass 1: process rows. */ |
3003 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3004 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
3005 |
/* We must also scale the output by 8/4 = 2, which we add here. */ |
3006 |
|
3007 |
dataptr = data; |
3008 |
for (ctr = 0; ctr < 4; ctr++) { |
3009 |
elemptr = sample_data[ctr] + start_col; |
3010 |
|
3011 |
/* Even part per LL&M figure 1 --- note that published figure is faulty; |
3012 |
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
3013 |
*/ |
3014 |
|
3015 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
3016 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
3017 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
3018 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
3019 |
|
3020 |
tmp10 = tmp0 + tmp3; |
3021 |
tmp12 = tmp0 - tmp3; |
3022 |
tmp11 = tmp1 + tmp2; |
3023 |
tmp13 = tmp1 - tmp2; |
3024 |
|
3025 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
3026 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
3027 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
3028 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
3029 |
|
3030 |
/* Apply unsigned->signed conversion */ |
3031 |
dataptr[0] = (DCTELEM) |
3032 |
((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
3033 |
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1)); |
3034 |
|
3035 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
3036 |
/* Add fudge factor here for final descale. */ |
3037 |
z1 += ONE << (CONST_BITS-PASS1_BITS-2); |
3038 |
dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
3039 |
CONST_BITS-PASS1_BITS-1); |
3040 |
dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
3041 |
CONST_BITS-PASS1_BITS-1); |
3042 |
|
3043 |
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
3044 |
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
3045 |
* i0..i3 in the paper are tmp0..tmp3 here. |
3046 |
*/ |
3047 |
|
3048 |
tmp10 = tmp0 + tmp3; |
3049 |
tmp11 = tmp1 + tmp2; |
3050 |
tmp12 = tmp0 + tmp2; |
3051 |
tmp13 = tmp1 + tmp3; |
3052 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
3053 |
/* Add fudge factor here for final descale. */ |
3054 |
z1 += ONE << (CONST_BITS-PASS1_BITS-2); |
3055 |
|
3056 |
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
3057 |
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
3058 |
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
3059 |
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
3060 |
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
3061 |
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
3062 |
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
3063 |
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
3064 |
|
3065 |
tmp12 += z1; |
3066 |
tmp13 += z1; |
3067 |
|
3068 |
dataptr[1] = (DCTELEM) |
3069 |
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1); |
3070 |
dataptr[3] = (DCTELEM) |
3071 |
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1); |
3072 |
dataptr[5] = (DCTELEM) |
3073 |
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1); |
3074 |
dataptr[7] = (DCTELEM) |
3075 |
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1); |
3076 |
|
3077 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
3078 |
} |
3079 |
|
3080 |
/* Pass 2: process columns. |
3081 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
3082 |
* by an overall factor of 8. |
3083 |
* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
3084 |
*/ |
3085 |
|
3086 |
dataptr = data; |
3087 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
3088 |
/* Even part */ |
3089 |
|
3090 |
/* Add fudge factor here for final descale. */ |
3091 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); |
3092 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; |
3093 |
|
3094 |
tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; |
3095 |
tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; |
3096 |
|
3097 |
dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); |
3098 |
dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); |
3099 |
|
3100 |
/* Odd part */ |
3101 |
|
3102 |
tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
3103 |
/* Add fudge factor here for final descale. */ |
3104 |
tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); |
3105 |
|
3106 |
dataptr[DCTSIZE*1] = (DCTELEM) |
3107 |
RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
3108 |
CONST_BITS+PASS1_BITS); |
3109 |
dataptr[DCTSIZE*3] = (DCTELEM) |
3110 |
RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
3111 |
CONST_BITS+PASS1_BITS); |
3112 |
|
3113 |
dataptr++; /* advance pointer to next column */ |
3114 |
} |
3115 |
} |
3116 |
|
3117 |
|
3118 |
/* |
3119 |
* Perform the forward DCT on a 6x3 sample block. |
3120 |
* |
3121 |
* 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns). |
3122 |
*/ |
3123 |
|
3124 |
GLOBAL(void) |
3125 |
jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3126 |
{ |
3127 |
INT32 tmp0, tmp1, tmp2; |
3128 |
INT32 tmp10, tmp11, tmp12; |
3129 |
DCTELEM *dataptr; |
3130 |
JSAMPROW elemptr; |
3131 |
int ctr; |
3132 |
SHIFT_TEMPS |
3133 |
|
3134 |
/* Pre-zero output coefficient block. */ |
3135 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3136 |
|
3137 |
/* Pass 1: process rows. */ |
3138 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3139 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
3140 |
/* We scale the results further by 2 as part of output adaption */ |
3141 |
/* scaling for different DCT size. */ |
3142 |
/* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ |
3143 |
|
3144 |
dataptr = data; |
3145 |
for (ctr = 0; ctr < 3; ctr++) { |
3146 |
elemptr = sample_data[ctr] + start_col; |
3147 |
|
3148 |
/* Even part */ |
3149 |
|
3150 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); |
3151 |
tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); |
3152 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); |
3153 |
|
3154 |
tmp10 = tmp0 + tmp2; |
3155 |
tmp12 = tmp0 - tmp2; |
3156 |
|
3157 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); |
3158 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); |
3159 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); |
3160 |
|
3161 |
/* Apply unsigned->signed conversion */ |
3162 |
dataptr[0] = (DCTELEM) |
3163 |
((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
3164 |
dataptr[2] = (DCTELEM) |
3165 |
DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ |
3166 |
CONST_BITS-PASS1_BITS-1); |
3167 |
dataptr[4] = (DCTELEM) |
3168 |
DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ |
3169 |
CONST_BITS-PASS1_BITS-1); |
3170 |
|
3171 |
/* Odd part */ |
3172 |
|
3173 |
tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ |
3174 |
CONST_BITS-PASS1_BITS-1); |
3175 |
|
3176 |
dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1))); |
3177 |
dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1)); |
3178 |
dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1))); |
3179 |
|
3180 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
3181 |
} |
3182 |
|
3183 |
/* Pass 2: process columns. |
3184 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
3185 |
* by an overall factor of 8. |
3186 |
* We must also scale the output by (8/6)*(8/3) = 32/9, which we partially |
3187 |
* fold into the constant multipliers (other part was done in pass 1): |
3188 |
* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9. |
3189 |
*/ |
3190 |
|
3191 |
dataptr = data; |
3192 |
for (ctr = 0; ctr < 6; ctr++) { |
3193 |
/* Even part */ |
3194 |
|
3195 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; |
3196 |
tmp1 = dataptr[DCTSIZE*1]; |
3197 |
|
3198 |
tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; |
3199 |
|
3200 |
dataptr[DCTSIZE*0] = (DCTELEM) |
3201 |
DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
3202 |
CONST_BITS+PASS1_BITS); |
3203 |
dataptr[DCTSIZE*2] = (DCTELEM) |
3204 |
DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ |
3205 |
CONST_BITS+PASS1_BITS); |
3206 |
|
3207 |
/* Odd part */ |
3208 |
|
3209 |
dataptr[DCTSIZE*1] = (DCTELEM) |
3210 |
DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ |
3211 |
CONST_BITS+PASS1_BITS); |
3212 |
|
3213 |
dataptr++; /* advance pointer to next column */ |
3214 |
} |
3215 |
} |
3216 |
|
3217 |
|
3218 |
/* |
3219 |
* Perform the forward DCT on a 4x2 sample block. |
3220 |
* |
3221 |
* 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). |
3222 |
*/ |
3223 |
|
3224 |
GLOBAL(void) |
3225 |
jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3226 |
{ |
3227 |
INT32 tmp0, tmp1; |
3228 |
INT32 tmp10, tmp11; |
3229 |
DCTELEM *dataptr; |
3230 |
JSAMPROW elemptr; |
3231 |
int ctr; |
3232 |
SHIFT_TEMPS |
3233 |
|
3234 |
/* Pre-zero output coefficient block. */ |
3235 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3236 |
|
3237 |
/* Pass 1: process rows. */ |
3238 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3239 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
3240 |
/* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */ |
3241 |
/* 4-point FDCT kernel, */ |
3242 |
/* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ |
3243 |
|
3244 |
dataptr = data; |
3245 |
for (ctr = 0; ctr < 2; ctr++) { |
3246 |
elemptr = sample_data[ctr] + start_col; |
3247 |
|
3248 |
/* Even part */ |
3249 |
|
3250 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); |
3251 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); |
3252 |
|
3253 |
tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); |
3254 |
tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); |
3255 |
|
3256 |
/* Apply unsigned->signed conversion */ |
3257 |
dataptr[0] = (DCTELEM) |
3258 |
((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+3)); |
3259 |
dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+3)); |
3260 |
|
3261 |
/* Odd part */ |
3262 |
|
3263 |
tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
3264 |
/* Add fudge factor here for final descale. */ |
3265 |
tmp0 += ONE << (CONST_BITS-PASS1_BITS-4); |
3266 |
|
3267 |
dataptr[1] = (DCTELEM) |
3268 |
RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
3269 |
CONST_BITS-PASS1_BITS-3); |
3270 |
dataptr[3] = (DCTELEM) |
3271 |
RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
3272 |
CONST_BITS-PASS1_BITS-3); |
3273 |
|
3274 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
3275 |
} |
3276 |
|
3277 |
/* Pass 2: process columns. |
3278 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
3279 |
* by an overall factor of 8. |
3280 |
*/ |
3281 |
|
3282 |
dataptr = data; |
3283 |
for (ctr = 0; ctr < 4; ctr++) { |
3284 |
/* Even part */ |
3285 |
|
3286 |
/* Add fudge factor here for final descale. */ |
3287 |
tmp0 = dataptr[DCTSIZE*0] + (ONE << (PASS1_BITS-1)); |
3288 |
tmp1 = dataptr[DCTSIZE*1]; |
3289 |
|
3290 |
dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); |
3291 |
|
3292 |
/* Odd part */ |
3293 |
|
3294 |
dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); |
3295 |
|
3296 |
dataptr++; /* advance pointer to next column */ |
3297 |
} |
3298 |
} |
3299 |
|
3300 |
|
3301 |
/* |
3302 |
* Perform the forward DCT on a 2x1 sample block. |
3303 |
* |
3304 |
* 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns). |
3305 |
*/ |
3306 |
|
3307 |
GLOBAL(void) |
3308 |
jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3309 |
{ |
3310 |
INT32 tmp0, tmp1; |
3311 |
JSAMPROW elemptr; |
3312 |
|
3313 |
/* Pre-zero output coefficient block. */ |
3314 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3315 |
|
3316 |
elemptr = sample_data[0] + start_col; |
3317 |
|
3318 |
tmp0 = GETJSAMPLE(elemptr[0]); |
3319 |
tmp1 = GETJSAMPLE(elemptr[1]); |
3320 |
|
3321 |
/* We leave the results scaled up by an overall factor of 8. |
3322 |
* We must also scale the output by (8/2)*(8/1) = 2**5. |
3323 |
*/ |
3324 |
|
3325 |
/* Even part */ |
3326 |
/* Apply unsigned->signed conversion */ |
3327 |
data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); |
3328 |
|
3329 |
/* Odd part */ |
3330 |
data[1] = (DCTELEM) ((tmp0 - tmp1) << 5); |
3331 |
} |
3332 |
|
3333 |
|
3334 |
/* |
3335 |
* Perform the forward DCT on an 8x16 sample block. |
3336 |
* |
3337 |
* 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns). |
3338 |
*/ |
3339 |
|
3340 |
GLOBAL(void) |
3341 |
jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3342 |
{ |
3343 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
3344 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; |
3345 |
INT32 z1; |
3346 |
DCTELEM workspace[DCTSIZE2]; |
3347 |
DCTELEM *dataptr; |
3348 |
DCTELEM *wsptr; |
3349 |
JSAMPROW elemptr; |
3350 |
int ctr; |
3351 |
SHIFT_TEMPS |
3352 |
|
3353 |
/* Pass 1: process rows. */ |
3354 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3355 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
3356 |
|
3357 |
dataptr = data; |
3358 |
ctr = 0; |
3359 |
for (;;) { |
3360 |
elemptr = sample_data[ctr] + start_col; |
3361 |
|
3362 |
/* Even part per LL&M figure 1 --- note that published figure is faulty; |
3363 |
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
3364 |
*/ |
3365 |
|
3366 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
3367 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
3368 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
3369 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
3370 |
|
3371 |
tmp10 = tmp0 + tmp3; |
3372 |
tmp12 = tmp0 - tmp3; |
3373 |
tmp11 = tmp1 + tmp2; |
3374 |
tmp13 = tmp1 - tmp2; |
3375 |
|
3376 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
3377 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
3378 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
3379 |
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
3380 |
|
3381 |
/* Apply unsigned->signed conversion */ |
3382 |
dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); |
3383 |
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); |
3384 |
|
3385 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
3386 |
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
3387 |
CONST_BITS-PASS1_BITS); |
3388 |
dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
3389 |
CONST_BITS-PASS1_BITS); |
3390 |
|
3391 |
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
3392 |
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
3393 |
* i0..i3 in the paper are tmp0..tmp3 here. |
3394 |
*/ |
3395 |
|
3396 |
tmp10 = tmp0 + tmp3; |
3397 |
tmp11 = tmp1 + tmp2; |
3398 |
tmp12 = tmp0 + tmp2; |
3399 |
tmp13 = tmp1 + tmp3; |
3400 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
3401 |
|
3402 |
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
3403 |
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
3404 |
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
3405 |
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
3406 |
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
3407 |
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
3408 |
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
3409 |
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
3410 |
|
3411 |
tmp12 += z1; |
3412 |
tmp13 += z1; |
3413 |
|
3414 |
dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); |
3415 |
dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); |
3416 |
dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); |
3417 |
dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); |
3418 |
|
3419 |
ctr++; |
3420 |
|
3421 |
if (ctr != DCTSIZE) { |
3422 |
if (ctr == DCTSIZE * 2) |
3423 |
break; /* Done. */ |
3424 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
3425 |
} else |
3426 |
dataptr = workspace; /* switch pointer to extended workspace */ |
3427 |
} |
3428 |
|
3429 |
/* Pass 2: process columns. |
3430 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
3431 |
* by an overall factor of 8. |
3432 |
* We must also scale the output by 8/16 = 1/2. |
3433 |
* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). |
3434 |
*/ |
3435 |
|
3436 |
dataptr = data; |
3437 |
wsptr = workspace; |
3438 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
3439 |
/* Even part */ |
3440 |
|
3441 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; |
3442 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; |
3443 |
tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; |
3444 |
tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; |
3445 |
tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; |
3446 |
tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; |
3447 |
tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; |
3448 |
tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; |
3449 |
|
3450 |
tmp10 = tmp0 + tmp7; |
3451 |
tmp14 = tmp0 - tmp7; |
3452 |
tmp11 = tmp1 + tmp6; |
3453 |
tmp15 = tmp1 - tmp6; |
3454 |
tmp12 = tmp2 + tmp5; |
3455 |
tmp16 = tmp2 - tmp5; |
3456 |
tmp13 = tmp3 + tmp4; |
3457 |
tmp17 = tmp3 - tmp4; |
3458 |
|
3459 |
tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; |
3460 |
tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; |
3461 |
tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; |
3462 |
tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; |
3463 |
tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; |
3464 |
tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; |
3465 |
tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; |
3466 |
tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; |
3467 |
|
3468 |
dataptr[DCTSIZE*0] = (DCTELEM) |
3469 |
DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1); |
3470 |
dataptr[DCTSIZE*4] = (DCTELEM) |
3471 |
DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
3472 |
MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
3473 |
CONST_BITS+PASS1_BITS+1); |
3474 |
|
3475 |
tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
3476 |
MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
3477 |
|
3478 |
dataptr[DCTSIZE*2] = (DCTELEM) |
3479 |
DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
3480 |
+ MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ |
3481 |
CONST_BITS+PASS1_BITS+1); |
3482 |
dataptr[DCTSIZE*6] = (DCTELEM) |
3483 |
DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
3484 |
- MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
3485 |
CONST_BITS+PASS1_BITS+1); |
3486 |
|
3487 |
/* Odd part */ |
3488 |
|
3489 |
tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
3490 |
MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
3491 |
tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
3492 |
MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
3493 |
tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
3494 |
MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
3495 |
tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
3496 |
MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
3497 |
tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
3498 |
MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
3499 |
tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
3500 |
MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
3501 |
tmp10 = tmp11 + tmp12 + tmp13 - |
3502 |
MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
3503 |
MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
3504 |
tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
3505 |
- MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
3506 |
tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
3507 |
+ MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
3508 |
tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
3509 |
+ MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
3510 |
|
3511 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1); |
3512 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1); |
3513 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1); |
3514 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1); |
3515 |
|
3516 |
dataptr++; /* advance pointer to next column */ |
3517 |
wsptr++; /* advance pointer to next column */ |
3518 |
} |
3519 |
} |
3520 |
|
3521 |
|
3522 |
/* |
3523 |
* Perform the forward DCT on a 7x14 sample block. |
3524 |
* |
3525 |
* 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns). |
3526 |
*/ |
3527 |
|
3528 |
GLOBAL(void) |
3529 |
jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3530 |
{ |
3531 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
3532 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
3533 |
INT32 z1, z2, z3; |
3534 |
DCTELEM workspace[8*6]; |
3535 |
DCTELEM *dataptr; |
3536 |
DCTELEM *wsptr; |
3537 |
JSAMPROW elemptr; |
3538 |
int ctr; |
3539 |
SHIFT_TEMPS |
3540 |
|
3541 |
/* Pre-zero output coefficient block. */ |
3542 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3543 |
|
3544 |
/* Pass 1: process rows. */ |
3545 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3546 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
3547 |
/* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */ |
3548 |
|
3549 |
dataptr = data; |
3550 |
ctr = 0; |
3551 |
for (;;) { |
3552 |
elemptr = sample_data[ctr] + start_col; |
3553 |
|
3554 |
/* Even part */ |
3555 |
|
3556 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); |
3557 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); |
3558 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); |
3559 |
tmp3 = GETJSAMPLE(elemptr[3]); |
3560 |
|
3561 |
tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); |
3562 |
tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); |
3563 |
tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); |
3564 |
|
3565 |
z1 = tmp0 + tmp2; |
3566 |
/* Apply unsigned->signed conversion */ |
3567 |
dataptr[0] = (DCTELEM) |
3568 |
((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); |
3569 |
tmp3 += tmp3; |
3570 |
z1 -= tmp3; |
3571 |
z1 -= tmp3; |
3572 |
z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ |
3573 |
z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ |
3574 |
z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ |
3575 |
dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); |
3576 |
z1 -= z2; |
3577 |
z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ |
3578 |
dataptr[4] = (DCTELEM) |
3579 |
DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ |
3580 |
CONST_BITS-PASS1_BITS); |
3581 |
dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); |
3582 |
|
3583 |
/* Odd part */ |
3584 |
|
3585 |
tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
3586 |
tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
3587 |
tmp0 = tmp1 - tmp2; |
3588 |
tmp1 += tmp2; |
3589 |
tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ |
3590 |
tmp1 += tmp2; |
3591 |
tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ |
3592 |
tmp0 += tmp3; |
3593 |
tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ |
3594 |
|
3595 |
dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); |
3596 |
dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); |
3597 |
dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); |
3598 |
|
3599 |
ctr++; |
3600 |
|
3601 |
if (ctr != DCTSIZE) { |
3602 |
if (ctr == 14) |
3603 |
break; /* Done. */ |
3604 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
3605 |
} else |
3606 |
dataptr = workspace; /* switch pointer to extended workspace */ |
3607 |
} |
3608 |
|
3609 |
/* Pass 2: process columns. |
3610 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
3611 |
* by an overall factor of 8. |
3612 |
* We must also scale the output by (8/7)*(8/14) = 32/49, which we |
3613 |
* fold into the constant multipliers: |
3614 |
* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49. |
3615 |
*/ |
3616 |
|
3617 |
dataptr = data; |
3618 |
wsptr = workspace; |
3619 |
for (ctr = 0; ctr < 7; ctr++) { |
3620 |
/* Even part */ |
3621 |
|
3622 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; |
3623 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; |
3624 |
tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; |
3625 |
tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; |
3626 |
tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; |
3627 |
tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; |
3628 |
tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; |
3629 |
|
3630 |
tmp10 = tmp0 + tmp6; |
3631 |
tmp14 = tmp0 - tmp6; |
3632 |
tmp11 = tmp1 + tmp5; |
3633 |
tmp15 = tmp1 - tmp5; |
3634 |
tmp12 = tmp2 + tmp4; |
3635 |
tmp16 = tmp2 - tmp4; |
3636 |
|
3637 |
tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; |
3638 |
tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; |
3639 |
tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; |
3640 |
tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; |
3641 |
tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; |
3642 |
tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; |
3643 |
tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; |
3644 |
|
3645 |
dataptr[DCTSIZE*0] = (DCTELEM) |
3646 |
DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, |
3647 |
FIX(0.653061224)), /* 32/49 */ |
3648 |
CONST_BITS+PASS1_BITS); |
3649 |
tmp13 += tmp13; |
3650 |
dataptr[DCTSIZE*4] = (DCTELEM) |
3651 |
DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ |
3652 |
MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ |
3653 |
MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ |
3654 |
CONST_BITS+PASS1_BITS); |
3655 |
|
3656 |
tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ |
3657 |
|
3658 |
dataptr[DCTSIZE*2] = (DCTELEM) |
3659 |
DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ |
3660 |
+ MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ |
3661 |
CONST_BITS+PASS1_BITS); |
3662 |
dataptr[DCTSIZE*6] = (DCTELEM) |
3663 |
DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ |
3664 |
- MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ |
3665 |
CONST_BITS+PASS1_BITS); |
3666 |
|
3667 |
/* Odd part */ |
3668 |
|
3669 |
tmp10 = tmp1 + tmp2; |
3670 |
tmp11 = tmp5 - tmp4; |
3671 |
dataptr[DCTSIZE*7] = (DCTELEM) |
3672 |
DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, |
3673 |
FIX(0.653061224)), /* 32/49 */ |
3674 |
CONST_BITS+PASS1_BITS); |
3675 |
tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ |
3676 |
tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ |
3677 |
tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ |
3678 |
tmp10 += tmp11 - tmp3; |
3679 |
tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ |
3680 |
MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ |
3681 |
dataptr[DCTSIZE*5] = (DCTELEM) |
3682 |
DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ |
3683 |
+ MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ |
3684 |
CONST_BITS+PASS1_BITS); |
3685 |
tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ |
3686 |
MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ |
3687 |
dataptr[DCTSIZE*3] = (DCTELEM) |
3688 |
DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ |
3689 |
- MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ |
3690 |
CONST_BITS+PASS1_BITS); |
3691 |
dataptr[DCTSIZE*1] = (DCTELEM) |
3692 |
DESCALE(tmp11 + tmp12 + tmp3 |
3693 |
- MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ |
3694 |
- MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ |
3695 |
CONST_BITS+PASS1_BITS); |
3696 |
|
3697 |
dataptr++; /* advance pointer to next column */ |
3698 |
wsptr++; /* advance pointer to next column */ |
3699 |
} |
3700 |
} |
3701 |
|
3702 |
|
3703 |
/* |
3704 |
* Perform the forward DCT on a 6x12 sample block. |
3705 |
* |
3706 |
* 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns). |
3707 |
*/ |
3708 |
|
3709 |
GLOBAL(void) |
3710 |
jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3711 |
{ |
3712 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
3713 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
3714 |
DCTELEM workspace[8*4]; |
3715 |
DCTELEM *dataptr; |
3716 |
DCTELEM *wsptr; |
3717 |
JSAMPROW elemptr; |
3718 |
int ctr; |
3719 |
SHIFT_TEMPS |
3720 |
|
3721 |
/* Pre-zero output coefficient block. */ |
3722 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3723 |
|
3724 |
/* Pass 1: process rows. */ |
3725 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3726 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
3727 |
/* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ |
3728 |
|
3729 |
dataptr = data; |
3730 |
ctr = 0; |
3731 |
for (;;) { |
3732 |
elemptr = sample_data[ctr] + start_col; |
3733 |
|
3734 |
/* Even part */ |
3735 |
|
3736 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); |
3737 |
tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); |
3738 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); |
3739 |
|
3740 |
tmp10 = tmp0 + tmp2; |
3741 |
tmp12 = tmp0 - tmp2; |
3742 |
|
3743 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); |
3744 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); |
3745 |
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); |
3746 |
|
3747 |
/* Apply unsigned->signed conversion */ |
3748 |
dataptr[0] = (DCTELEM) |
3749 |
((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); |
3750 |
dataptr[2] = (DCTELEM) |
3751 |
DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ |
3752 |
CONST_BITS-PASS1_BITS); |
3753 |
dataptr[4] = (DCTELEM) |
3754 |
DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ |
3755 |
CONST_BITS-PASS1_BITS); |
3756 |
|
3757 |
/* Odd part */ |
3758 |
|
3759 |
tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ |
3760 |
CONST_BITS-PASS1_BITS); |
3761 |
|
3762 |
dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); |
3763 |
dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); |
3764 |
dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); |
3765 |
|
3766 |
ctr++; |
3767 |
|
3768 |
if (ctr != DCTSIZE) { |
3769 |
if (ctr == 12) |
3770 |
break; /* Done. */ |
3771 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
3772 |
} else |
3773 |
dataptr = workspace; /* switch pointer to extended workspace */ |
3774 |
} |
3775 |
|
3776 |
/* Pass 2: process columns. |
3777 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
3778 |
* by an overall factor of 8. |
3779 |
* We must also scale the output by (8/6)*(8/12) = 8/9, which we |
3780 |
* fold into the constant multipliers: |
3781 |
* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9. |
3782 |
*/ |
3783 |
|
3784 |
dataptr = data; |
3785 |
wsptr = workspace; |
3786 |
for (ctr = 0; ctr < 6; ctr++) { |
3787 |
/* Even part */ |
3788 |
|
3789 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; |
3790 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; |
3791 |
tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; |
3792 |
tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; |
3793 |
tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; |
3794 |
tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; |
3795 |
|
3796 |
tmp10 = tmp0 + tmp5; |
3797 |
tmp13 = tmp0 - tmp5; |
3798 |
tmp11 = tmp1 + tmp4; |
3799 |
tmp14 = tmp1 - tmp4; |
3800 |
tmp12 = tmp2 + tmp3; |
3801 |
tmp15 = tmp2 - tmp3; |
3802 |
|
3803 |
tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; |
3804 |
tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; |
3805 |
tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; |
3806 |
tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; |
3807 |
tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; |
3808 |
tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; |
3809 |
|
3810 |
dataptr[DCTSIZE*0] = (DCTELEM) |
3811 |
DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ |
3812 |
CONST_BITS+PASS1_BITS); |
3813 |
dataptr[DCTSIZE*6] = (DCTELEM) |
3814 |
DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ |
3815 |
CONST_BITS+PASS1_BITS); |
3816 |
dataptr[DCTSIZE*4] = (DCTELEM) |
3817 |
DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ |
3818 |
CONST_BITS+PASS1_BITS); |
3819 |
dataptr[DCTSIZE*2] = (DCTELEM) |
3820 |
DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ |
3821 |
MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ |
3822 |
CONST_BITS+PASS1_BITS); |
3823 |
|
3824 |
/* Odd part */ |
3825 |
|
3826 |
tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ |
3827 |
tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ |
3828 |
tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ |
3829 |
tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ |
3830 |
tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ |
3831 |
tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ |
3832 |
+ MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ |
3833 |
tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ |
3834 |
tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ |
3835 |
+ MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ |
3836 |
tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ |
3837 |
- MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ |
3838 |
tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ |
3839 |
- MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ |
3840 |
|
3841 |
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS); |
3842 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS); |
3843 |
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS); |
3844 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS); |
3845 |
|
3846 |
dataptr++; /* advance pointer to next column */ |
3847 |
wsptr++; /* advance pointer to next column */ |
3848 |
} |
3849 |
} |
3850 |
|
3851 |
|
3852 |
/* |
3853 |
* Perform the forward DCT on a 5x10 sample block. |
3854 |
* |
3855 |
* 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns). |
3856 |
*/ |
3857 |
|
3858 |
GLOBAL(void) |
3859 |
jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3860 |
{ |
3861 |
INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
3862 |
INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
3863 |
DCTELEM workspace[8*2]; |
3864 |
DCTELEM *dataptr; |
3865 |
DCTELEM *wsptr; |
3866 |
JSAMPROW elemptr; |
3867 |
int ctr; |
3868 |
SHIFT_TEMPS |
3869 |
|
3870 |
/* Pre-zero output coefficient block. */ |
3871 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3872 |
|
3873 |
/* Pass 1: process rows. */ |
3874 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3875 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
3876 |
/* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */ |
3877 |
|
3878 |
dataptr = data; |
3879 |
ctr = 0; |
3880 |
for (;;) { |
3881 |
elemptr = sample_data[ctr] + start_col; |
3882 |
|
3883 |
/* Even part */ |
3884 |
|
3885 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); |
3886 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); |
3887 |
tmp2 = GETJSAMPLE(elemptr[2]); |
3888 |
|
3889 |
tmp10 = tmp0 + tmp1; |
3890 |
tmp11 = tmp0 - tmp1; |
3891 |
|
3892 |
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); |
3893 |
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); |
3894 |
|
3895 |
/* Apply unsigned->signed conversion */ |
3896 |
dataptr[0] = (DCTELEM) |
3897 |
((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS); |
3898 |
tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ |
3899 |
tmp10 -= tmp2 << 2; |
3900 |
tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ |
3901 |
dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS); |
3902 |
dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS); |
3903 |
|
3904 |
/* Odd part */ |
3905 |
|
3906 |
tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ |
3907 |
|
3908 |
dataptr[1] = (DCTELEM) |
3909 |
DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ |
3910 |
CONST_BITS-PASS1_BITS); |
3911 |
dataptr[3] = (DCTELEM) |
3912 |
DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ |
3913 |
CONST_BITS-PASS1_BITS); |
3914 |
|
3915 |
ctr++; |
3916 |
|
3917 |
if (ctr != DCTSIZE) { |
3918 |
if (ctr == 10) |
3919 |
break; /* Done. */ |
3920 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
3921 |
} else |
3922 |
dataptr = workspace; /* switch pointer to extended workspace */ |
3923 |
} |
3924 |
|
3925 |
/* Pass 2: process columns. |
3926 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
3927 |
* by an overall factor of 8. |
3928 |
* We must also scale the output by (8/5)*(8/10) = 32/25, which we |
3929 |
* fold into the constant multipliers: |
3930 |
* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25. |
3931 |
*/ |
3932 |
|
3933 |
dataptr = data; |
3934 |
wsptr = workspace; |
3935 |
for (ctr = 0; ctr < 5; ctr++) { |
3936 |
/* Even part */ |
3937 |
|
3938 |
tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; |
3939 |
tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; |
3940 |
tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; |
3941 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; |
3942 |
tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; |
3943 |
|
3944 |
tmp10 = tmp0 + tmp4; |
3945 |
tmp13 = tmp0 - tmp4; |
3946 |
tmp11 = tmp1 + tmp3; |
3947 |
tmp14 = tmp1 - tmp3; |
3948 |
|
3949 |
tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; |
3950 |
tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; |
3951 |
tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; |
3952 |
tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; |
3953 |
tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; |
3954 |
|
3955 |
dataptr[DCTSIZE*0] = (DCTELEM) |
3956 |
DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ |
3957 |
CONST_BITS+PASS1_BITS); |
3958 |
tmp12 += tmp12; |
3959 |
dataptr[DCTSIZE*4] = (DCTELEM) |
3960 |
DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ |
3961 |
MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ |
3962 |
CONST_BITS+PASS1_BITS); |
3963 |
tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ |
3964 |
dataptr[DCTSIZE*2] = (DCTELEM) |
3965 |
DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ |
3966 |
CONST_BITS+PASS1_BITS); |
3967 |
dataptr[DCTSIZE*6] = (DCTELEM) |
3968 |
DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ |
3969 |
CONST_BITS+PASS1_BITS); |
3970 |
|
3971 |
/* Odd part */ |
3972 |
|
3973 |
tmp10 = tmp0 + tmp4; |
3974 |
tmp11 = tmp1 - tmp3; |
3975 |
dataptr[DCTSIZE*5] = (DCTELEM) |
3976 |
DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ |
3977 |
CONST_BITS+PASS1_BITS); |
3978 |
tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ |
3979 |
dataptr[DCTSIZE*1] = (DCTELEM) |
3980 |
DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ |
3981 |
MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ |
3982 |
MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ |
3983 |
MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ |
3984 |
CONST_BITS+PASS1_BITS); |
3985 |
tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ |
3986 |
MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ |
3987 |
tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ |
3988 |
MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ |
3989 |
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS); |
3990 |
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS); |
3991 |
|
3992 |
dataptr++; /* advance pointer to next column */ |
3993 |
wsptr++; /* advance pointer to next column */ |
3994 |
} |
3995 |
} |
3996 |
|
3997 |
|
3998 |
/* |
3999 |
* Perform the forward DCT on a 4x8 sample block. |
4000 |
* |
4001 |
* 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). |
4002 |
*/ |
4003 |
|
4004 |
GLOBAL(void) |
4005 |
jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
4006 |
{ |
4007 |
INT32 tmp0, tmp1, tmp2, tmp3; |
4008 |
INT32 tmp10, tmp11, tmp12, tmp13; |
4009 |
INT32 z1; |
4010 |
DCTELEM *dataptr; |
4011 |
JSAMPROW elemptr; |
4012 |
int ctr; |
4013 |
SHIFT_TEMPS |
4014 |
|
4015 |
/* Pre-zero output coefficient block. */ |
4016 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
4017 |
|
4018 |
/* Pass 1: process rows. */ |
4019 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
4020 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
4021 |
/* We must also scale the output by 8/4 = 2, which we add here. */ |
4022 |
/* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */ |
4023 |
|
4024 |
dataptr = data; |
4025 |
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
4026 |
elemptr = sample_data[ctr] + start_col; |
4027 |
|
4028 |
/* Even part */ |
4029 |
|
4030 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); |
4031 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); |
4032 |
|
4033 |
tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); |
4034 |
tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); |
4035 |
|
4036 |
/* Apply unsigned->signed conversion */ |
4037 |
dataptr[0] = (DCTELEM) |
4038 |
((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
4039 |
dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1)); |
4040 |
|
4041 |
/* Odd part */ |
4042 |
|
4043 |
tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
4044 |
/* Add fudge factor here for final descale. */ |
4045 |
tmp0 += ONE << (CONST_BITS-PASS1_BITS-2); |
4046 |
|
4047 |
dataptr[1] = (DCTELEM) |
4048 |
RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
4049 |
CONST_BITS-PASS1_BITS-1); |
4050 |
dataptr[3] = (DCTELEM) |
4051 |
RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
4052 |
CONST_BITS-PASS1_BITS-1); |
4053 |
|
4054 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
4055 |
} |
4056 |
|
4057 |
/* Pass 2: process columns. |
4058 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
4059 |
* by an overall factor of 8. |
4060 |
*/ |
4061 |
|
4062 |
dataptr = data; |
4063 |
for (ctr = 0; ctr < 4; ctr++) { |
4064 |
/* Even part per LL&M figure 1 --- note that published figure is faulty; |
4065 |
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
4066 |
*/ |
4067 |
|
4068 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
4069 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
4070 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
4071 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
4072 |
|
4073 |
/* Add fudge factor here for final descale. */ |
4074 |
tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); |
4075 |
tmp12 = tmp0 - tmp3; |
4076 |
tmp11 = tmp1 + tmp2; |
4077 |
tmp13 = tmp1 - tmp2; |
4078 |
|
4079 |
tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
4080 |
tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
4081 |
tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
4082 |
tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
4083 |
|
4084 |
dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); |
4085 |
dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); |
4086 |
|
4087 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
4088 |
/* Add fudge factor here for final descale. */ |
4089 |
z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
4090 |
dataptr[DCTSIZE*2] = (DCTELEM) |
4091 |
RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); |
4092 |
dataptr[DCTSIZE*6] = (DCTELEM) |
4093 |
RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); |
4094 |
|
4095 |
/* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
4096 |
* 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
4097 |
* i0..i3 in the paper are tmp0..tmp3 here. |
4098 |
*/ |
4099 |
|
4100 |
tmp10 = tmp0 + tmp3; |
4101 |
tmp11 = tmp1 + tmp2; |
4102 |
tmp12 = tmp0 + tmp2; |
4103 |
tmp13 = tmp1 + tmp3; |
4104 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
4105 |
/* Add fudge factor here for final descale. */ |
4106 |
z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
4107 |
|
4108 |
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
4109 |
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
4110 |
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
4111 |
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
4112 |
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
4113 |
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
4114 |
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
4115 |
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
4116 |
|
4117 |
tmp12 += z1; |
4118 |
tmp13 += z1; |
4119 |
|
4120 |
dataptr[DCTSIZE*1] = (DCTELEM) |
4121 |
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); |
4122 |
dataptr[DCTSIZE*3] = (DCTELEM) |
4123 |
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); |
4124 |
dataptr[DCTSIZE*5] = (DCTELEM) |
4125 |
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); |
4126 |
dataptr[DCTSIZE*7] = (DCTELEM) |
4127 |
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); |
4128 |
|
4129 |
dataptr++; /* advance pointer to next column */ |
4130 |
} |
4131 |
} |
4132 |
|
4133 |
|
4134 |
/* |
4135 |
* Perform the forward DCT on a 3x6 sample block. |
4136 |
* |
4137 |
* 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). |
4138 |
*/ |
4139 |
|
4140 |
GLOBAL(void) |
4141 |
jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
4142 |
{ |
4143 |
INT32 tmp0, tmp1, tmp2; |
4144 |
INT32 tmp10, tmp11, tmp12; |
4145 |
DCTELEM *dataptr; |
4146 |
JSAMPROW elemptr; |
4147 |
int ctr; |
4148 |
SHIFT_TEMPS |
4149 |
|
4150 |
/* Pre-zero output coefficient block. */ |
4151 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
4152 |
|
4153 |
/* Pass 1: process rows. */ |
4154 |
/* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
4155 |
/* furthermore, we scale the results by 2**PASS1_BITS. */ |
4156 |
/* We scale the results further by 2 as part of output adaption */ |
4157 |
/* scaling for different DCT size. */ |
4158 |
/* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */ |
4159 |
|
4160 |
dataptr = data; |
4161 |
for (ctr = 0; ctr < 6; ctr++) { |
4162 |
elemptr = sample_data[ctr] + start_col; |
4163 |
|
4164 |
/* Even part */ |
4165 |
|
4166 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); |
4167 |
tmp1 = GETJSAMPLE(elemptr[1]); |
4168 |
|
4169 |
tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); |
4170 |
|
4171 |
/* Apply unsigned->signed conversion */ |
4172 |
dataptr[0] = (DCTELEM) |
4173 |
((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
4174 |
dataptr[2] = (DCTELEM) |
4175 |
DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ |
4176 |
CONST_BITS-PASS1_BITS-1); |
4177 |
|
4178 |
/* Odd part */ |
4179 |
|
4180 |
dataptr[1] = (DCTELEM) |
4181 |
DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ |
4182 |
CONST_BITS-PASS1_BITS-1); |
4183 |
|
4184 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
4185 |
} |
4186 |
|
4187 |
/* Pass 2: process columns. |
4188 |
* We remove the PASS1_BITS scaling, but leave the results scaled up |
4189 |
* by an overall factor of 8. |
4190 |
* We must also scale the output by (8/6)*(8/3) = 32/9, which we partially |
4191 |
* fold into the constant multipliers (other part was done in pass 1): |
4192 |
* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. |
4193 |
*/ |
4194 |
|
4195 |
dataptr = data; |
4196 |
for (ctr = 0; ctr < 3; ctr++) { |
4197 |
/* Even part */ |
4198 |
|
4199 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; |
4200 |
tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; |
4201 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
4202 |
|
4203 |
tmp10 = tmp0 + tmp2; |
4204 |
tmp12 = tmp0 - tmp2; |
4205 |
|
4206 |
tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; |
4207 |
tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; |
4208 |
tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
4209 |
|
4210 |
dataptr[DCTSIZE*0] = (DCTELEM) |
4211 |
DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ |
4212 |
CONST_BITS+PASS1_BITS); |
4213 |
dataptr[DCTSIZE*2] = (DCTELEM) |
4214 |
DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ |
4215 |
CONST_BITS+PASS1_BITS); |
4216 |
dataptr[DCTSIZE*4] = (DCTELEM) |
4217 |
DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ |
4218 |
CONST_BITS+PASS1_BITS); |
4219 |
|
4220 |
/* Odd part */ |
4221 |
|
4222 |
tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ |
4223 |
|
4224 |
dataptr[DCTSIZE*1] = (DCTELEM) |
4225 |
DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
4226 |
CONST_BITS+PASS1_BITS); |
4227 |
dataptr[DCTSIZE*3] = (DCTELEM) |
4228 |
DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ |
4229 |
CONST_BITS+PASS1_BITS); |
4230 |
dataptr[DCTSIZE*5] = (DCTELEM) |
4231 |
DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ |
4232 |
CONST_BITS+PASS1_BITS); |
4233 |
|
4234 |
dataptr++; /* advance pointer to next column */ |
4235 |
} |
4236 |
} |
4237 |
|
4238 |
|
4239 |
/* |
4240 |
* Perform the forward DCT on a 2x4 sample block. |
4241 |
* |
4242 |
* 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). |
4243 |
*/ |
4244 |
|
4245 |
GLOBAL(void) |
4246 |
jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
4247 |
{ |
4248 |
INT32 tmp0, tmp1; |
4249 |
INT32 tmp10, tmp11; |
4250 |
DCTELEM *dataptr; |
4251 |
JSAMPROW elemptr; |
4252 |
int ctr; |
4253 |
SHIFT_TEMPS |
4254 |
|
4255 |
/* Pre-zero output coefficient block. */ |
4256 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
4257 |
|
4258 |
/* Pass 1: process rows. */ |
4259 |
/* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
4260 |
/* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */ |
4261 |
|
4262 |
dataptr = data; |
4263 |
for (ctr = 0; ctr < 4; ctr++) { |
4264 |
elemptr = sample_data[ctr] + start_col; |
4265 |
|
4266 |
/* Even part */ |
4267 |
|
4268 |
tmp0 = GETJSAMPLE(elemptr[0]); |
4269 |
tmp1 = GETJSAMPLE(elemptr[1]); |
4270 |
|
4271 |
/* Apply unsigned->signed conversion */ |
4272 |
dataptr[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 3); |
4273 |
|
4274 |
/* Odd part */ |
4275 |
|
4276 |
dataptr[1] = (DCTELEM) ((tmp0 - tmp1) << 3); |
4277 |
|
4278 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
4279 |
} |
4280 |
|
4281 |
/* Pass 2: process columns. |
4282 |
* We leave the results scaled up by an overall factor of 8. |
4283 |
* 4-point FDCT kernel, |
4284 |
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. |
4285 |
*/ |
4286 |
|
4287 |
dataptr = data; |
4288 |
for (ctr = 0; ctr < 2; ctr++) { |
4289 |
/* Even part */ |
4290 |
|
4291 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3]; |
4292 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; |
4293 |
|
4294 |
tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; |
4295 |
tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; |
4296 |
|
4297 |
dataptr[DCTSIZE*0] = (DCTELEM) (tmp0 + tmp1); |
4298 |
dataptr[DCTSIZE*2] = (DCTELEM) (tmp0 - tmp1); |
4299 |
|
4300 |
/* Odd part */ |
4301 |
|
4302 |
tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
4303 |
/* Add fudge factor here for final descale. */ |
4304 |
tmp0 += ONE << (CONST_BITS-1); |
4305 |
|
4306 |
dataptr[DCTSIZE*1] = (DCTELEM) |
4307 |
RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
4308 |
CONST_BITS); |
4309 |
dataptr[DCTSIZE*3] = (DCTELEM) |
4310 |
RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
4311 |
CONST_BITS); |
4312 |
|
4313 |
dataptr++; /* advance pointer to next column */ |
4314 |
} |
4315 |
} |
4316 |
|
4317 |
|
4318 |
/* |
4319 |
* Perform the forward DCT on a 1x2 sample block. |
4320 |
* |
4321 |
* 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). |
4322 |
*/ |
4323 |
|
4324 |
GLOBAL(void) |
4325 |
jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
4326 |
{ |
4327 |
INT32 tmp0, tmp1; |
4328 |
|
4329 |
/* Pre-zero output coefficient block. */ |
4330 |
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
4331 |
|
4332 |
tmp0 = GETJSAMPLE(sample_data[0][start_col]); |
4333 |
tmp1 = GETJSAMPLE(sample_data[1][start_col]); |
4334 |
|
4335 |
/* We leave the results scaled up by an overall factor of 8. |
4336 |
* We must also scale the output by (8/1)*(8/2) = 2**5. |
4337 |
*/ |
4338 |
|
4339 |
/* Even part */ |
4340 |
/* Apply unsigned->signed conversion */ |
4341 |
data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); |
4342 |
|
4343 |
/* Odd part */ |
4344 |
data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5); |
4345 |
} |
4346 |
|
4347 |
#endif /* DCT_SCALING_SUPPORTED */ |
4348 |
#endif /* DCT_ISLOW_SUPPORTED */ |