1 |
/* |
2 |
* jfdctfst.c |
3 |
* |
4 |
* Copyright (C) 1994-1996, Thomas G. Lane. |
5 |
* Modified 2003-2009 by Guido Vollbeding. |
6 |
* This file is part of the Independent JPEG Group's software. |
7 |
* For conditions of distribution and use, see the accompanying README file. |
8 |
* |
9 |
* This file contains a fast, not so accurate integer implementation of the |
10 |
* forward DCT (Discrete Cosine Transform). |
11 |
* |
12 |
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
13 |
* on each column. Direct algorithms are also available, but they are |
14 |
* much more complex and seem not to be any faster when reduced to code. |
15 |
* |
16 |
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
17 |
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
18 |
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
19 |
* JPEG textbook (see REFERENCES section in file README). The following code |
20 |
* is based directly on figure 4-8 in P&M. |
21 |
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
22 |
* possible to arrange the computation so that many of the multiplies are |
23 |
* simple scalings of the final outputs. These multiplies can then be |
24 |
* folded into the multiplications or divisions by the JPEG quantization |
25 |
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
26 |
* to be done in the DCT itself. |
27 |
* The primary disadvantage of this method is that with fixed-point math, |
28 |
* accuracy is lost due to imprecise representation of the scaled |
29 |
* quantization values. The smaller the quantization table entry, the less |
30 |
* precise the scaled value, so this implementation does worse with high- |
31 |
* quality-setting files than with low-quality ones. |
32 |
*/ |
33 |
|
34 |
#define JPEG_INTERNALS |
35 |
#include "jinclude.h" |
36 |
#include "jpeglib.h" |
37 |
#include "jdct.h" /* Private declarations for DCT subsystem */ |
38 |
|
39 |
#ifdef DCT_IFAST_SUPPORTED |
40 |
|
41 |
|
42 |
/* |
43 |
* This module is specialized to the case DCTSIZE = 8. |
44 |
*/ |
45 |
|
46 |
#if DCTSIZE != 8 |
47 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
48 |
#endif |
49 |
|
50 |
|
51 |
/* Scaling decisions are generally the same as in the LL&M algorithm; |
52 |
* see jfdctint.c for more details. However, we choose to descale |
53 |
* (right shift) multiplication products as soon as they are formed, |
54 |
* rather than carrying additional fractional bits into subsequent additions. |
55 |
* This compromises accuracy slightly, but it lets us save a few shifts. |
56 |
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
57 |
* everywhere except in the multiplications proper; this saves a good deal |
58 |
* of work on 16-bit-int machines. |
59 |
* |
60 |
* Again to save a few shifts, the intermediate results between pass 1 and |
61 |
* pass 2 are not upscaled, but are represented only to integral precision. |
62 |
* |
63 |
* A final compromise is to represent the multiplicative constants to only |
64 |
* 8 fractional bits, rather than 13. This saves some shifting work on some |
65 |
* machines, and may also reduce the cost of multiplication (since there |
66 |
* are fewer one-bits in the constants). |
67 |
*/ |
68 |
|
69 |
#define CONST_BITS 8 |
70 |
|
71 |
|
72 |
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
73 |
* causing a lot of useless floating-point operations at run time. |
74 |
* To get around this we use the following pre-calculated constants. |
75 |
* If you change CONST_BITS you may want to add appropriate values. |
76 |
* (With a reasonable C compiler, you can just rely on the FIX() macro...) |
77 |
*/ |
78 |
|
79 |
#if CONST_BITS == 8 |
80 |
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ |
81 |
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ |
82 |
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ |
83 |
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ |
84 |
#else |
85 |
#define FIX_0_382683433 FIX(0.382683433) |
86 |
#define FIX_0_541196100 FIX(0.541196100) |
87 |
#define FIX_0_707106781 FIX(0.707106781) |
88 |
#define FIX_1_306562965 FIX(1.306562965) |
89 |
#endif |
90 |
|
91 |
|
92 |
/* We can gain a little more speed, with a further compromise in accuracy, |
93 |
* by omitting the addition in a descaling shift. This yields an incorrectly |
94 |
* rounded result half the time... |
95 |
*/ |
96 |
|
97 |
#ifndef USE_ACCURATE_ROUNDING |
98 |
#undef DESCALE |
99 |
#define DESCALE(x,n) RIGHT_SHIFT(x, n) |
100 |
#endif |
101 |
|
102 |
|
103 |
/* Multiply a DCTELEM variable by an INT32 constant, and immediately |
104 |
* descale to yield a DCTELEM result. |
105 |
*/ |
106 |
|
107 |
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
108 |
|
109 |
|
110 |
/* |
111 |
* Perform the forward DCT on one block of samples. |
112 |
*/ |
113 |
|
114 |
GLOBAL(void) |
115 |
jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
116 |
{ |
117 |
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
118 |
DCTELEM tmp10, tmp11, tmp12, tmp13; |
119 |
DCTELEM z1, z2, z3, z4, z5, z11, z13; |
120 |
DCTELEM *dataptr; |
121 |
JSAMPROW elemptr; |
122 |
int ctr; |
123 |
SHIFT_TEMPS |
124 |
|
125 |
/* Pass 1: process rows. */ |
126 |
|
127 |
dataptr = data; |
128 |
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
129 |
elemptr = sample_data[ctr] + start_col; |
130 |
|
131 |
/* Load data into workspace */ |
132 |
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
133 |
tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
134 |
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
135 |
tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
136 |
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
137 |
tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
138 |
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
139 |
tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
140 |
|
141 |
/* Even part */ |
142 |
|
143 |
tmp10 = tmp0 + tmp3; /* phase 2 */ |
144 |
tmp13 = tmp0 - tmp3; |
145 |
tmp11 = tmp1 + tmp2; |
146 |
tmp12 = tmp1 - tmp2; |
147 |
|
148 |
/* Apply unsigned->signed conversion */ |
149 |
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ |
150 |
dataptr[4] = tmp10 - tmp11; |
151 |
|
152 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
153 |
dataptr[2] = tmp13 + z1; /* phase 5 */ |
154 |
dataptr[6] = tmp13 - z1; |
155 |
|
156 |
/* Odd part */ |
157 |
|
158 |
tmp10 = tmp4 + tmp5; /* phase 2 */ |
159 |
tmp11 = tmp5 + tmp6; |
160 |
tmp12 = tmp6 + tmp7; |
161 |
|
162 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
163 |
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
164 |
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
165 |
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
166 |
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
167 |
|
168 |
z11 = tmp7 + z3; /* phase 5 */ |
169 |
z13 = tmp7 - z3; |
170 |
|
171 |
dataptr[5] = z13 + z2; /* phase 6 */ |
172 |
dataptr[3] = z13 - z2; |
173 |
dataptr[1] = z11 + z4; |
174 |
dataptr[7] = z11 - z4; |
175 |
|
176 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
177 |
} |
178 |
|
179 |
/* Pass 2: process columns. */ |
180 |
|
181 |
dataptr = data; |
182 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
183 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
184 |
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
185 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
186 |
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
187 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
188 |
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
189 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
190 |
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
191 |
|
192 |
/* Even part */ |
193 |
|
194 |
tmp10 = tmp0 + tmp3; /* phase 2 */ |
195 |
tmp13 = tmp0 - tmp3; |
196 |
tmp11 = tmp1 + tmp2; |
197 |
tmp12 = tmp1 - tmp2; |
198 |
|
199 |
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
200 |
dataptr[DCTSIZE*4] = tmp10 - tmp11; |
201 |
|
202 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
203 |
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
204 |
dataptr[DCTSIZE*6] = tmp13 - z1; |
205 |
|
206 |
/* Odd part */ |
207 |
|
208 |
tmp10 = tmp4 + tmp5; /* phase 2 */ |
209 |
tmp11 = tmp5 + tmp6; |
210 |
tmp12 = tmp6 + tmp7; |
211 |
|
212 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
213 |
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
214 |
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
215 |
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
216 |
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
217 |
|
218 |
z11 = tmp7 + z3; /* phase 5 */ |
219 |
z13 = tmp7 - z3; |
220 |
|
221 |
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
222 |
dataptr[DCTSIZE*3] = z13 - z2; |
223 |
dataptr[DCTSIZE*1] = z11 + z4; |
224 |
dataptr[DCTSIZE*7] = z11 - z4; |
225 |
|
226 |
dataptr++; /* advance pointer to next column */ |
227 |
} |
228 |
} |
229 |
|
230 |
#endif /* DCT_IFAST_SUPPORTED */ |