1 |
/* |
2 |
* jfdctflt.c |
3 |
* |
4 |
* Copyright (C) 1994-1996, Thomas G. Lane. |
5 |
* Modified 2003-2009 by Guido Vollbeding. |
6 |
* This file is part of the Independent JPEG Group's software. |
7 |
* For conditions of distribution and use, see the accompanying README file. |
8 |
* |
9 |
* This file contains a floating-point implementation of the |
10 |
* forward DCT (Discrete Cosine Transform). |
11 |
* |
12 |
* This implementation should be more accurate than either of the integer |
13 |
* DCT implementations. However, it may not give the same results on all |
14 |
* machines because of differences in roundoff behavior. Speed will depend |
15 |
* on the hardware's floating point capacity. |
16 |
* |
17 |
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
18 |
* on each column. Direct algorithms are also available, but they are |
19 |
* much more complex and seem not to be any faster when reduced to code. |
20 |
* |
21 |
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
22 |
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
23 |
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
24 |
* JPEG textbook (see REFERENCES section in file README). The following code |
25 |
* is based directly on figure 4-8 in P&M. |
26 |
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
27 |
* possible to arrange the computation so that many of the multiplies are |
28 |
* simple scalings of the final outputs. These multiplies can then be |
29 |
* folded into the multiplications or divisions by the JPEG quantization |
30 |
* table entries. The AA&N method leaves only 5 multiplies and 29 adds |
31 |
* to be done in the DCT itself. |
32 |
* The primary disadvantage of this method is that with a fixed-point |
33 |
* implementation, accuracy is lost due to imprecise representation of the |
34 |
* scaled quantization values. However, that problem does not arise if |
35 |
* we use floating point arithmetic. |
36 |
*/ |
37 |
|
38 |
#define JPEG_INTERNALS |
39 |
#include "jinclude.h" |
40 |
#include "jpeglib.h" |
41 |
#include "jdct.h" /* Private declarations for DCT subsystem */ |
42 |
|
43 |
#ifdef DCT_FLOAT_SUPPORTED |
44 |
|
45 |
|
46 |
/* |
47 |
* This module is specialized to the case DCTSIZE = 8. |
48 |
*/ |
49 |
|
50 |
#if DCTSIZE != 8 |
51 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
52 |
#endif |
53 |
|
54 |
|
55 |
/* |
56 |
* Perform the forward DCT on one block of samples. |
57 |
*/ |
58 |
|
59 |
GLOBAL(void) |
60 |
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
61 |
{ |
62 |
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
63 |
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
64 |
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; |
65 |
FAST_FLOAT *dataptr; |
66 |
JSAMPROW elemptr; |
67 |
int ctr; |
68 |
|
69 |
/* Pass 1: process rows. */ |
70 |
|
71 |
dataptr = data; |
72 |
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
73 |
elemptr = sample_data[ctr] + start_col; |
74 |
|
75 |
/* Load data into workspace */ |
76 |
tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7])); |
77 |
tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7])); |
78 |
tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6])); |
79 |
tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6])); |
80 |
tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5])); |
81 |
tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5])); |
82 |
tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4])); |
83 |
tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4])); |
84 |
|
85 |
/* Even part */ |
86 |
|
87 |
tmp10 = tmp0 + tmp3; /* phase 2 */ |
88 |
tmp13 = tmp0 - tmp3; |
89 |
tmp11 = tmp1 + tmp2; |
90 |
tmp12 = tmp1 - tmp2; |
91 |
|
92 |
/* Apply unsigned->signed conversion */ |
93 |
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ |
94 |
dataptr[4] = tmp10 - tmp11; |
95 |
|
96 |
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
97 |
dataptr[2] = tmp13 + z1; /* phase 5 */ |
98 |
dataptr[6] = tmp13 - z1; |
99 |
|
100 |
/* Odd part */ |
101 |
|
102 |
tmp10 = tmp4 + tmp5; /* phase 2 */ |
103 |
tmp11 = tmp5 + tmp6; |
104 |
tmp12 = tmp6 + tmp7; |
105 |
|
106 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
107 |
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
108 |
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
109 |
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
110 |
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
111 |
|
112 |
z11 = tmp7 + z3; /* phase 5 */ |
113 |
z13 = tmp7 - z3; |
114 |
|
115 |
dataptr[5] = z13 + z2; /* phase 6 */ |
116 |
dataptr[3] = z13 - z2; |
117 |
dataptr[1] = z11 + z4; |
118 |
dataptr[7] = z11 - z4; |
119 |
|
120 |
dataptr += DCTSIZE; /* advance pointer to next row */ |
121 |
} |
122 |
|
123 |
/* Pass 2: process columns. */ |
124 |
|
125 |
dataptr = data; |
126 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
127 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
128 |
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
129 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
130 |
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
131 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
132 |
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
133 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
134 |
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
135 |
|
136 |
/* Even part */ |
137 |
|
138 |
tmp10 = tmp0 + tmp3; /* phase 2 */ |
139 |
tmp13 = tmp0 - tmp3; |
140 |
tmp11 = tmp1 + tmp2; |
141 |
tmp12 = tmp1 - tmp2; |
142 |
|
143 |
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
144 |
dataptr[DCTSIZE*4] = tmp10 - tmp11; |
145 |
|
146 |
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
147 |
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
148 |
dataptr[DCTSIZE*6] = tmp13 - z1; |
149 |
|
150 |
/* Odd part */ |
151 |
|
152 |
tmp10 = tmp4 + tmp5; /* phase 2 */ |
153 |
tmp11 = tmp5 + tmp6; |
154 |
tmp12 = tmp6 + tmp7; |
155 |
|
156 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */ |
157 |
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
158 |
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
159 |
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
160 |
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
161 |
|
162 |
z11 = tmp7 + z3; /* phase 5 */ |
163 |
z13 = tmp7 - z3; |
164 |
|
165 |
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
166 |
dataptr[DCTSIZE*3] = z13 - z2; |
167 |
dataptr[DCTSIZE*1] = z11 + z4; |
168 |
dataptr[DCTSIZE*7] = z11 - z4; |
169 |
|
170 |
dataptr++; /* advance pointer to next column */ |
171 |
} |
172 |
} |
173 |
|
174 |
#endif /* DCT_FLOAT_SUPPORTED */ |