1 |
william |
31 |
/* |
2 |
|
|
* jdcoefct.c |
3 |
|
|
* |
4 |
|
|
* Copyright (C) 1994-1997, Thomas G. Lane. |
5 |
|
|
* This file is part of the Independent JPEG Group's software. |
6 |
|
|
* For conditions of distribution and use, see the accompanying README file. |
7 |
|
|
* |
8 |
|
|
* This file contains the coefficient buffer controller for decompression. |
9 |
|
|
* This controller is the top level of the JPEG decompressor proper. |
10 |
|
|
* The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
11 |
|
|
* |
12 |
|
|
* In buffered-image mode, this controller is the interface between |
13 |
|
|
* input-oriented processing and output-oriented processing. |
14 |
|
|
* Also, the input side (only) is used when reading a file for transcoding. |
15 |
|
|
*/ |
16 |
|
|
|
17 |
|
|
#define JPEG_INTERNALS |
18 |
|
|
#include "jinclude.h" |
19 |
|
|
#include "jpeglib.h" |
20 |
|
|
|
21 |
|
|
/* Block smoothing is only applicable for progressive JPEG, so: */ |
22 |
|
|
#ifndef D_PROGRESSIVE_SUPPORTED |
23 |
|
|
#undef BLOCK_SMOOTHING_SUPPORTED |
24 |
|
|
#endif |
25 |
|
|
|
26 |
|
|
/* Private buffer controller object */ |
27 |
|
|
|
28 |
|
|
typedef struct { |
29 |
|
|
struct jpeg_d_coef_controller pub; /* public fields */ |
30 |
|
|
|
31 |
|
|
/* These variables keep track of the current location of the input side. */ |
32 |
|
|
/* cinfo->input_iMCU_row is also used for this. */ |
33 |
|
|
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
34 |
|
|
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
35 |
|
|
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
36 |
|
|
|
37 |
|
|
/* The output side's location is represented by cinfo->output_iMCU_row. */ |
38 |
|
|
|
39 |
|
|
/* In single-pass modes, it's sufficient to buffer just one MCU. |
40 |
|
|
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
41 |
|
|
* and let the entropy decoder write into that workspace each time. |
42 |
|
|
* (On 80x86, the workspace is FAR even though it's not really very big; |
43 |
|
|
* this is to keep the module interfaces unchanged when a large coefficient |
44 |
|
|
* buffer is necessary.) |
45 |
|
|
* In multi-pass modes, this array points to the current MCU's blocks |
46 |
|
|
* within the virtual arrays; it is used only by the input side. |
47 |
|
|
*/ |
48 |
|
|
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
49 |
|
|
|
50 |
|
|
#ifdef D_MULTISCAN_FILES_SUPPORTED |
51 |
|
|
/* In multi-pass modes, we need a virtual block array for each component. */ |
52 |
|
|
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
53 |
|
|
#endif |
54 |
|
|
|
55 |
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
56 |
|
|
/* When doing block smoothing, we latch coefficient Al values here */ |
57 |
|
|
int * coef_bits_latch; |
58 |
|
|
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
59 |
|
|
#endif |
60 |
|
|
} my_coef_controller; |
61 |
|
|
|
62 |
|
|
typedef my_coef_controller * my_coef_ptr; |
63 |
|
|
|
64 |
|
|
/* Forward declarations */ |
65 |
|
|
METHODDEF(int) decompress_onepass |
66 |
|
|
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
67 |
|
|
#ifdef D_MULTISCAN_FILES_SUPPORTED |
68 |
|
|
METHODDEF(int) decompress_data |
69 |
|
|
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
70 |
|
|
#endif |
71 |
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
72 |
|
|
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); |
73 |
|
|
METHODDEF(int) decompress_smooth_data |
74 |
|
|
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
75 |
|
|
#endif |
76 |
|
|
|
77 |
|
|
|
78 |
|
|
LOCAL(void) |
79 |
|
|
start_iMCU_row (j_decompress_ptr cinfo) |
80 |
|
|
/* Reset within-iMCU-row counters for a new row (input side) */ |
81 |
|
|
{ |
82 |
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
83 |
|
|
|
84 |
|
|
/* In an interleaved scan, an MCU row is the same as an iMCU row. |
85 |
|
|
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
86 |
|
|
* But at the bottom of the image, process only what's left. |
87 |
|
|
*/ |
88 |
|
|
if (cinfo->comps_in_scan > 1) { |
89 |
|
|
coef->MCU_rows_per_iMCU_row = 1; |
90 |
|
|
} else { |
91 |
|
|
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
92 |
|
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
93 |
|
|
else |
94 |
|
|
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
95 |
|
|
} |
96 |
|
|
|
97 |
|
|
coef->MCU_ctr = 0; |
98 |
|
|
coef->MCU_vert_offset = 0; |
99 |
|
|
} |
100 |
|
|
|
101 |
|
|
|
102 |
|
|
/* |
103 |
|
|
* Initialize for an input processing pass. |
104 |
|
|
*/ |
105 |
|
|
|
106 |
|
|
METHODDEF(void) |
107 |
|
|
start_input_pass (j_decompress_ptr cinfo) |
108 |
|
|
{ |
109 |
|
|
cinfo->input_iMCU_row = 0; |
110 |
|
|
start_iMCU_row(cinfo); |
111 |
|
|
} |
112 |
|
|
|
113 |
|
|
|
114 |
|
|
/* |
115 |
|
|
* Initialize for an output processing pass. |
116 |
|
|
*/ |
117 |
|
|
|
118 |
|
|
METHODDEF(void) |
119 |
|
|
start_output_pass (j_decompress_ptr cinfo) |
120 |
|
|
{ |
121 |
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
122 |
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
123 |
|
|
|
124 |
|
|
/* If multipass, check to see whether to use block smoothing on this pass */ |
125 |
|
|
if (coef->pub.coef_arrays != NULL) { |
126 |
|
|
if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
127 |
|
|
coef->pub.decompress_data = decompress_smooth_data; |
128 |
|
|
else |
129 |
|
|
coef->pub.decompress_data = decompress_data; |
130 |
|
|
} |
131 |
|
|
#endif |
132 |
|
|
cinfo->output_iMCU_row = 0; |
133 |
|
|
} |
134 |
|
|
|
135 |
|
|
|
136 |
|
|
/* |
137 |
|
|
* Decompress and return some data in the single-pass case. |
138 |
|
|
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
139 |
|
|
* Input and output must run in lockstep since we have only a one-MCU buffer. |
140 |
|
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
141 |
|
|
* |
142 |
|
|
* NB: output_buf contains a plane for each component in image, |
143 |
|
|
* which we index according to the component's SOF position. |
144 |
|
|
*/ |
145 |
|
|
|
146 |
|
|
METHODDEF(int) |
147 |
|
|
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
148 |
|
|
{ |
149 |
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
150 |
|
|
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
151 |
|
|
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
152 |
|
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
153 |
|
|
int blkn, ci, xindex, yindex, yoffset, useful_width; |
154 |
|
|
JSAMPARRAY output_ptr; |
155 |
|
|
JDIMENSION start_col, output_col; |
156 |
|
|
jpeg_component_info *compptr; |
157 |
|
|
inverse_DCT_method_ptr inverse_DCT; |
158 |
|
|
|
159 |
|
|
/* Loop to process as much as one whole iMCU row */ |
160 |
|
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
161 |
|
|
yoffset++) { |
162 |
|
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
163 |
|
|
MCU_col_num++) { |
164 |
|
|
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
165 |
|
|
jzero_far((void FAR *) coef->MCU_buffer[0], |
166 |
|
|
(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); |
167 |
|
|
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
168 |
|
|
/* Suspension forced; update state counters and exit */ |
169 |
|
|
coef->MCU_vert_offset = yoffset; |
170 |
|
|
coef->MCU_ctr = MCU_col_num; |
171 |
|
|
return JPEG_SUSPENDED; |
172 |
|
|
} |
173 |
|
|
/* Determine where data should go in output_buf and do the IDCT thing. |
174 |
|
|
* We skip dummy blocks at the right and bottom edges (but blkn gets |
175 |
|
|
* incremented past them!). Note the inner loop relies on having |
176 |
|
|
* allocated the MCU_buffer[] blocks sequentially. |
177 |
|
|
*/ |
178 |
|
|
blkn = 0; /* index of current DCT block within MCU */ |
179 |
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
180 |
|
|
compptr = cinfo->cur_comp_info[ci]; |
181 |
|
|
/* Don't bother to IDCT an uninteresting component. */ |
182 |
|
|
if (! compptr->component_needed) { |
183 |
|
|
blkn += compptr->MCU_blocks; |
184 |
|
|
continue; |
185 |
|
|
} |
186 |
|
|
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
187 |
|
|
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
188 |
|
|
: compptr->last_col_width; |
189 |
|
|
output_ptr = output_buf[compptr->component_index] + |
190 |
|
|
yoffset * compptr->DCT_v_scaled_size; |
191 |
|
|
start_col = MCU_col_num * compptr->MCU_sample_width; |
192 |
|
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
193 |
|
|
if (cinfo->input_iMCU_row < last_iMCU_row || |
194 |
|
|
yoffset+yindex < compptr->last_row_height) { |
195 |
|
|
output_col = start_col; |
196 |
|
|
for (xindex = 0; xindex < useful_width; xindex++) { |
197 |
|
|
(*inverse_DCT) (cinfo, compptr, |
198 |
|
|
(JCOEFPTR) coef->MCU_buffer[blkn+xindex], |
199 |
|
|
output_ptr, output_col); |
200 |
|
|
output_col += compptr->DCT_h_scaled_size; |
201 |
|
|
} |
202 |
|
|
} |
203 |
|
|
blkn += compptr->MCU_width; |
204 |
|
|
output_ptr += compptr->DCT_v_scaled_size; |
205 |
|
|
} |
206 |
|
|
} |
207 |
|
|
} |
208 |
|
|
/* Completed an MCU row, but perhaps not an iMCU row */ |
209 |
|
|
coef->MCU_ctr = 0; |
210 |
|
|
} |
211 |
|
|
/* Completed the iMCU row, advance counters for next one */ |
212 |
|
|
cinfo->output_iMCU_row++; |
213 |
|
|
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
214 |
|
|
start_iMCU_row(cinfo); |
215 |
|
|
return JPEG_ROW_COMPLETED; |
216 |
|
|
} |
217 |
|
|
/* Completed the scan */ |
218 |
|
|
(*cinfo->inputctl->finish_input_pass) (cinfo); |
219 |
|
|
return JPEG_SCAN_COMPLETED; |
220 |
|
|
} |
221 |
|
|
|
222 |
|
|
|
223 |
|
|
/* |
224 |
|
|
* Dummy consume-input routine for single-pass operation. |
225 |
|
|
*/ |
226 |
|
|
|
227 |
|
|
METHODDEF(int) |
228 |
|
|
dummy_consume_data (j_decompress_ptr cinfo) |
229 |
|
|
{ |
230 |
|
|
return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
231 |
|
|
} |
232 |
|
|
|
233 |
|
|
|
234 |
|
|
#ifdef D_MULTISCAN_FILES_SUPPORTED |
235 |
|
|
|
236 |
|
|
/* |
237 |
|
|
* Consume input data and store it in the full-image coefficient buffer. |
238 |
|
|
* We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
239 |
|
|
* ie, v_samp_factor block rows for each component in the scan. |
240 |
|
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
241 |
|
|
*/ |
242 |
|
|
|
243 |
|
|
METHODDEF(int) |
244 |
|
|
consume_data (j_decompress_ptr cinfo) |
245 |
|
|
{ |
246 |
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
247 |
|
|
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
248 |
|
|
int blkn, ci, xindex, yindex, yoffset; |
249 |
|
|
JDIMENSION start_col; |
250 |
|
|
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
251 |
|
|
JBLOCKROW buffer_ptr; |
252 |
|
|
jpeg_component_info *compptr; |
253 |
|
|
|
254 |
|
|
/* Align the virtual buffers for the components used in this scan. */ |
255 |
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
256 |
|
|
compptr = cinfo->cur_comp_info[ci]; |
257 |
|
|
buffer[ci] = (*cinfo->mem->access_virt_barray) |
258 |
|
|
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
259 |
|
|
cinfo->input_iMCU_row * compptr->v_samp_factor, |
260 |
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE); |
261 |
|
|
/* Note: entropy decoder expects buffer to be zeroed, |
262 |
|
|
* but this is handled automatically by the memory manager |
263 |
|
|
* because we requested a pre-zeroed array. |
264 |
|
|
*/ |
265 |
|
|
} |
266 |
|
|
|
267 |
|
|
/* Loop to process one whole iMCU row */ |
268 |
|
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
269 |
|
|
yoffset++) { |
270 |
|
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
271 |
|
|
MCU_col_num++) { |
272 |
|
|
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
273 |
|
|
blkn = 0; /* index of current DCT block within MCU */ |
274 |
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
275 |
|
|
compptr = cinfo->cur_comp_info[ci]; |
276 |
|
|
start_col = MCU_col_num * compptr->MCU_width; |
277 |
|
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
278 |
|
|
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
279 |
|
|
for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
280 |
|
|
coef->MCU_buffer[blkn++] = buffer_ptr++; |
281 |
|
|
} |
282 |
|
|
} |
283 |
|
|
} |
284 |
|
|
/* Try to fetch the MCU. */ |
285 |
|
|
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
286 |
|
|
/* Suspension forced; update state counters and exit */ |
287 |
|
|
coef->MCU_vert_offset = yoffset; |
288 |
|
|
coef->MCU_ctr = MCU_col_num; |
289 |
|
|
return JPEG_SUSPENDED; |
290 |
|
|
} |
291 |
|
|
} |
292 |
|
|
/* Completed an MCU row, but perhaps not an iMCU row */ |
293 |
|
|
coef->MCU_ctr = 0; |
294 |
|
|
} |
295 |
|
|
/* Completed the iMCU row, advance counters for next one */ |
296 |
|
|
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
297 |
|
|
start_iMCU_row(cinfo); |
298 |
|
|
return JPEG_ROW_COMPLETED; |
299 |
|
|
} |
300 |
|
|
/* Completed the scan */ |
301 |
|
|
(*cinfo->inputctl->finish_input_pass) (cinfo); |
302 |
|
|
return JPEG_SCAN_COMPLETED; |
303 |
|
|
} |
304 |
|
|
|
305 |
|
|
|
306 |
|
|
/* |
307 |
|
|
* Decompress and return some data in the multi-pass case. |
308 |
|
|
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
309 |
|
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
310 |
|
|
* |
311 |
|
|
* NB: output_buf contains a plane for each component in image. |
312 |
|
|
*/ |
313 |
|
|
|
314 |
|
|
METHODDEF(int) |
315 |
|
|
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
316 |
|
|
{ |
317 |
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
318 |
|
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
319 |
|
|
JDIMENSION block_num; |
320 |
|
|
int ci, block_row, block_rows; |
321 |
|
|
JBLOCKARRAY buffer; |
322 |
|
|
JBLOCKROW buffer_ptr; |
323 |
|
|
JSAMPARRAY output_ptr; |
324 |
|
|
JDIMENSION output_col; |
325 |
|
|
jpeg_component_info *compptr; |
326 |
|
|
inverse_DCT_method_ptr inverse_DCT; |
327 |
|
|
|
328 |
|
|
/* Force some input to be done if we are getting ahead of the input. */ |
329 |
|
|
while (cinfo->input_scan_number < cinfo->output_scan_number || |
330 |
|
|
(cinfo->input_scan_number == cinfo->output_scan_number && |
331 |
|
|
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
332 |
|
|
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
333 |
|
|
return JPEG_SUSPENDED; |
334 |
|
|
} |
335 |
|
|
|
336 |
|
|
/* OK, output from the virtual arrays. */ |
337 |
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
338 |
|
|
ci++, compptr++) { |
339 |
|
|
/* Don't bother to IDCT an uninteresting component. */ |
340 |
|
|
if (! compptr->component_needed) |
341 |
|
|
continue; |
342 |
|
|
/* Align the virtual buffer for this component. */ |
343 |
|
|
buffer = (*cinfo->mem->access_virt_barray) |
344 |
|
|
((j_common_ptr) cinfo, coef->whole_image[ci], |
345 |
|
|
cinfo->output_iMCU_row * compptr->v_samp_factor, |
346 |
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE); |
347 |
|
|
/* Count non-dummy DCT block rows in this iMCU row. */ |
348 |
|
|
if (cinfo->output_iMCU_row < last_iMCU_row) |
349 |
|
|
block_rows = compptr->v_samp_factor; |
350 |
|
|
else { |
351 |
|
|
/* NB: can't use last_row_height here; it is input-side-dependent! */ |
352 |
|
|
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
353 |
|
|
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
354 |
|
|
} |
355 |
|
|
inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
356 |
|
|
output_ptr = output_buf[ci]; |
357 |
|
|
/* Loop over all DCT blocks to be processed. */ |
358 |
|
|
for (block_row = 0; block_row < block_rows; block_row++) { |
359 |
|
|
buffer_ptr = buffer[block_row]; |
360 |
|
|
output_col = 0; |
361 |
|
|
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { |
362 |
|
|
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
363 |
|
|
output_ptr, output_col); |
364 |
|
|
buffer_ptr++; |
365 |
|
|
output_col += compptr->DCT_h_scaled_size; |
366 |
|
|
} |
367 |
|
|
output_ptr += compptr->DCT_v_scaled_size; |
368 |
|
|
} |
369 |
|
|
} |
370 |
|
|
|
371 |
|
|
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
372 |
|
|
return JPEG_ROW_COMPLETED; |
373 |
|
|
return JPEG_SCAN_COMPLETED; |
374 |
|
|
} |
375 |
|
|
|
376 |
|
|
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
377 |
|
|
|
378 |
|
|
|
379 |
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
380 |
|
|
|
381 |
|
|
/* |
382 |
|
|
* This code applies interblock smoothing as described by section K.8 |
383 |
|
|
* of the JPEG standard: the first 5 AC coefficients are estimated from |
384 |
|
|
* the DC values of a DCT block and its 8 neighboring blocks. |
385 |
|
|
* We apply smoothing only for progressive JPEG decoding, and only if |
386 |
|
|
* the coefficients it can estimate are not yet known to full precision. |
387 |
|
|
*/ |
388 |
|
|
|
389 |
|
|
/* Natural-order array positions of the first 5 zigzag-order coefficients */ |
390 |
|
|
#define Q01_POS 1 |
391 |
|
|
#define Q10_POS 8 |
392 |
|
|
#define Q20_POS 16 |
393 |
|
|
#define Q11_POS 9 |
394 |
|
|
#define Q02_POS 2 |
395 |
|
|
|
396 |
|
|
/* |
397 |
|
|
* Determine whether block smoothing is applicable and safe. |
398 |
|
|
* We also latch the current states of the coef_bits[] entries for the |
399 |
|
|
* AC coefficients; otherwise, if the input side of the decompressor |
400 |
|
|
* advances into a new scan, we might think the coefficients are known |
401 |
|
|
* more accurately than they really are. |
402 |
|
|
*/ |
403 |
|
|
|
404 |
|
|
LOCAL(boolean) |
405 |
|
|
smoothing_ok (j_decompress_ptr cinfo) |
406 |
|
|
{ |
407 |
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
408 |
|
|
boolean smoothing_useful = FALSE; |
409 |
|
|
int ci, coefi; |
410 |
|
|
jpeg_component_info *compptr; |
411 |
|
|
JQUANT_TBL * qtable; |
412 |
|
|
int * coef_bits; |
413 |
|
|
int * coef_bits_latch; |
414 |
|
|
|
415 |
|
|
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
416 |
|
|
return FALSE; |
417 |
|
|
|
418 |
|
|
/* Allocate latch area if not already done */ |
419 |
|
|
if (coef->coef_bits_latch == NULL) |
420 |
|
|
coef->coef_bits_latch = (int *) |
421 |
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
422 |
|
|
cinfo->num_components * |
423 |
|
|
(SAVED_COEFS * SIZEOF(int))); |
424 |
|
|
coef_bits_latch = coef->coef_bits_latch; |
425 |
|
|
|
426 |
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
427 |
|
|
ci++, compptr++) { |
428 |
|
|
/* All components' quantization values must already be latched. */ |
429 |
|
|
if ((qtable = compptr->quant_table) == NULL) |
430 |
|
|
return FALSE; |
431 |
|
|
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
432 |
|
|
if (qtable->quantval[0] == 0 || |
433 |
|
|
qtable->quantval[Q01_POS] == 0 || |
434 |
|
|
qtable->quantval[Q10_POS] == 0 || |
435 |
|
|
qtable->quantval[Q20_POS] == 0 || |
436 |
|
|
qtable->quantval[Q11_POS] == 0 || |
437 |
|
|
qtable->quantval[Q02_POS] == 0) |
438 |
|
|
return FALSE; |
439 |
|
|
/* DC values must be at least partly known for all components. */ |
440 |
|
|
coef_bits = cinfo->coef_bits[ci]; |
441 |
|
|
if (coef_bits[0] < 0) |
442 |
|
|
return FALSE; |
443 |
|
|
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
444 |
|
|
for (coefi = 1; coefi <= 5; coefi++) { |
445 |
|
|
coef_bits_latch[coefi] = coef_bits[coefi]; |
446 |
|
|
if (coef_bits[coefi] != 0) |
447 |
|
|
smoothing_useful = TRUE; |
448 |
|
|
} |
449 |
|
|
coef_bits_latch += SAVED_COEFS; |
450 |
|
|
} |
451 |
|
|
|
452 |
|
|
return smoothing_useful; |
453 |
|
|
} |
454 |
|
|
|
455 |
|
|
|
456 |
|
|
/* |
457 |
|
|
* Variant of decompress_data for use when doing block smoothing. |
458 |
|
|
*/ |
459 |
|
|
|
460 |
|
|
METHODDEF(int) |
461 |
|
|
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
462 |
|
|
{ |
463 |
|
|
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
464 |
|
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
465 |
|
|
JDIMENSION block_num, last_block_column; |
466 |
|
|
int ci, block_row, block_rows, access_rows; |
467 |
|
|
JBLOCKARRAY buffer; |
468 |
|
|
JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
469 |
|
|
JSAMPARRAY output_ptr; |
470 |
|
|
JDIMENSION output_col; |
471 |
|
|
jpeg_component_info *compptr; |
472 |
|
|
inverse_DCT_method_ptr inverse_DCT; |
473 |
|
|
boolean first_row, last_row; |
474 |
|
|
JBLOCK workspace; |
475 |
|
|
int *coef_bits; |
476 |
|
|
JQUANT_TBL *quanttbl; |
477 |
|
|
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; |
478 |
|
|
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
479 |
|
|
int Al, pred; |
480 |
|
|
|
481 |
|
|
/* Force some input to be done if we are getting ahead of the input. */ |
482 |
|
|
while (cinfo->input_scan_number <= cinfo->output_scan_number && |
483 |
|
|
! cinfo->inputctl->eoi_reached) { |
484 |
|
|
if (cinfo->input_scan_number == cinfo->output_scan_number) { |
485 |
|
|
/* If input is working on current scan, we ordinarily want it to |
486 |
|
|
* have completed the current row. But if input scan is DC, |
487 |
|
|
* we want it to keep one row ahead so that next block row's DC |
488 |
|
|
* values are up to date. |
489 |
|
|
*/ |
490 |
|
|
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
491 |
|
|
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
492 |
|
|
break; |
493 |
|
|
} |
494 |
|
|
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
495 |
|
|
return JPEG_SUSPENDED; |
496 |
|
|
} |
497 |
|
|
|
498 |
|
|
/* OK, output from the virtual arrays. */ |
499 |
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
500 |
|
|
ci++, compptr++) { |
501 |
|
|
/* Don't bother to IDCT an uninteresting component. */ |
502 |
|
|
if (! compptr->component_needed) |
503 |
|
|
continue; |
504 |
|
|
/* Count non-dummy DCT block rows in this iMCU row. */ |
505 |
|
|
if (cinfo->output_iMCU_row < last_iMCU_row) { |
506 |
|
|
block_rows = compptr->v_samp_factor; |
507 |
|
|
access_rows = block_rows * 2; /* this and next iMCU row */ |
508 |
|
|
last_row = FALSE; |
509 |
|
|
} else { |
510 |
|
|
/* NB: can't use last_row_height here; it is input-side-dependent! */ |
511 |
|
|
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
512 |
|
|
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
513 |
|
|
access_rows = block_rows; /* this iMCU row only */ |
514 |
|
|
last_row = TRUE; |
515 |
|
|
} |
516 |
|
|
/* Align the virtual buffer for this component. */ |
517 |
|
|
if (cinfo->output_iMCU_row > 0) { |
518 |
|
|
access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
519 |
|
|
buffer = (*cinfo->mem->access_virt_barray) |
520 |
|
|
((j_common_ptr) cinfo, coef->whole_image[ci], |
521 |
|
|
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
522 |
|
|
(JDIMENSION) access_rows, FALSE); |
523 |
|
|
buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
524 |
|
|
first_row = FALSE; |
525 |
|
|
} else { |
526 |
|
|
buffer = (*cinfo->mem->access_virt_barray) |
527 |
|
|
((j_common_ptr) cinfo, coef->whole_image[ci], |
528 |
|
|
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
529 |
|
|
first_row = TRUE; |
530 |
|
|
} |
531 |
|
|
/* Fetch component-dependent info */ |
532 |
|
|
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
533 |
|
|
quanttbl = compptr->quant_table; |
534 |
|
|
Q00 = quanttbl->quantval[0]; |
535 |
|
|
Q01 = quanttbl->quantval[Q01_POS]; |
536 |
|
|
Q10 = quanttbl->quantval[Q10_POS]; |
537 |
|
|
Q20 = quanttbl->quantval[Q20_POS]; |
538 |
|
|
Q11 = quanttbl->quantval[Q11_POS]; |
539 |
|
|
Q02 = quanttbl->quantval[Q02_POS]; |
540 |
|
|
inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
541 |
|
|
output_ptr = output_buf[ci]; |
542 |
|
|
/* Loop over all DCT blocks to be processed. */ |
543 |
|
|
for (block_row = 0; block_row < block_rows; block_row++) { |
544 |
|
|
buffer_ptr = buffer[block_row]; |
545 |
|
|
if (first_row && block_row == 0) |
546 |
|
|
prev_block_row = buffer_ptr; |
547 |
|
|
else |
548 |
|
|
prev_block_row = buffer[block_row-1]; |
549 |
|
|
if (last_row && block_row == block_rows-1) |
550 |
|
|
next_block_row = buffer_ptr; |
551 |
|
|
else |
552 |
|
|
next_block_row = buffer[block_row+1]; |
553 |
|
|
/* We fetch the surrounding DC values using a sliding-register approach. |
554 |
|
|
* Initialize all nine here so as to do the right thing on narrow pics. |
555 |
|
|
*/ |
556 |
|
|
DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
557 |
|
|
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
558 |
|
|
DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
559 |
|
|
output_col = 0; |
560 |
|
|
last_block_column = compptr->width_in_blocks - 1; |
561 |
|
|
for (block_num = 0; block_num <= last_block_column; block_num++) { |
562 |
|
|
/* Fetch current DCT block into workspace so we can modify it. */ |
563 |
|
|
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
564 |
|
|
/* Update DC values */ |
565 |
|
|
if (block_num < last_block_column) { |
566 |
|
|
DC3 = (int) prev_block_row[1][0]; |
567 |
|
|
DC6 = (int) buffer_ptr[1][0]; |
568 |
|
|
DC9 = (int) next_block_row[1][0]; |
569 |
|
|
} |
570 |
|
|
/* Compute coefficient estimates per K.8. |
571 |
|
|
* An estimate is applied only if coefficient is still zero, |
572 |
|
|
* and is not known to be fully accurate. |
573 |
|
|
*/ |
574 |
|
|
/* AC01 */ |
575 |
|
|
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
576 |
|
|
num = 36 * Q00 * (DC4 - DC6); |
577 |
|
|
if (num >= 0) { |
578 |
|
|
pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
579 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
580 |
|
|
pred = (1<<Al)-1; |
581 |
|
|
} else { |
582 |
|
|
pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
583 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
584 |
|
|
pred = (1<<Al)-1; |
585 |
|
|
pred = -pred; |
586 |
|
|
} |
587 |
|
|
workspace[1] = (JCOEF) pred; |
588 |
|
|
} |
589 |
|
|
/* AC10 */ |
590 |
|
|
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
591 |
|
|
num = 36 * Q00 * (DC2 - DC8); |
592 |
|
|
if (num >= 0) { |
593 |
|
|
pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
594 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
595 |
|
|
pred = (1<<Al)-1; |
596 |
|
|
} else { |
597 |
|
|
pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
598 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
599 |
|
|
pred = (1<<Al)-1; |
600 |
|
|
pred = -pred; |
601 |
|
|
} |
602 |
|
|
workspace[8] = (JCOEF) pred; |
603 |
|
|
} |
604 |
|
|
/* AC20 */ |
605 |
|
|
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
606 |
|
|
num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
607 |
|
|
if (num >= 0) { |
608 |
|
|
pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
609 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
610 |
|
|
pred = (1<<Al)-1; |
611 |
|
|
} else { |
612 |
|
|
pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
613 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
614 |
|
|
pred = (1<<Al)-1; |
615 |
|
|
pred = -pred; |
616 |
|
|
} |
617 |
|
|
workspace[16] = (JCOEF) pred; |
618 |
|
|
} |
619 |
|
|
/* AC11 */ |
620 |
|
|
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
621 |
|
|
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
622 |
|
|
if (num >= 0) { |
623 |
|
|
pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
624 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
625 |
|
|
pred = (1<<Al)-1; |
626 |
|
|
} else { |
627 |
|
|
pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
628 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
629 |
|
|
pred = (1<<Al)-1; |
630 |
|
|
pred = -pred; |
631 |
|
|
} |
632 |
|
|
workspace[9] = (JCOEF) pred; |
633 |
|
|
} |
634 |
|
|
/* AC02 */ |
635 |
|
|
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
636 |
|
|
num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
637 |
|
|
if (num >= 0) { |
638 |
|
|
pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
639 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
640 |
|
|
pred = (1<<Al)-1; |
641 |
|
|
} else { |
642 |
|
|
pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
643 |
|
|
if (Al > 0 && pred >= (1<<Al)) |
644 |
|
|
pred = (1<<Al)-1; |
645 |
|
|
pred = -pred; |
646 |
|
|
} |
647 |
|
|
workspace[2] = (JCOEF) pred; |
648 |
|
|
} |
649 |
|
|
/* OK, do the IDCT */ |
650 |
|
|
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
651 |
|
|
output_ptr, output_col); |
652 |
|
|
/* Advance for next column */ |
653 |
|
|
DC1 = DC2; DC2 = DC3; |
654 |
|
|
DC4 = DC5; DC5 = DC6; |
655 |
|
|
DC7 = DC8; DC8 = DC9; |
656 |
|
|
buffer_ptr++, prev_block_row++, next_block_row++; |
657 |
|
|
output_col += compptr->DCT_h_scaled_size; |
658 |
|
|
} |
659 |
|
|
output_ptr += compptr->DCT_v_scaled_size; |
660 |
|
|
} |
661 |
|
|
} |
662 |
|
|
|
663 |
|
|
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
664 |
|
|
return JPEG_ROW_COMPLETED; |
665 |
|
|
return JPEG_SCAN_COMPLETED; |
666 |
|
|
} |
667 |
|
|
|
668 |
|
|
#endif /* BLOCK_SMOOTHING_SUPPORTED */ |
669 |
|
|
|
670 |
|
|
|
671 |
|
|
/* |
672 |
|
|
* Initialize coefficient buffer controller. |
673 |
|
|
*/ |
674 |
|
|
|
675 |
|
|
GLOBAL(void) |
676 |
|
|
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
677 |
|
|
{ |
678 |
|
|
my_coef_ptr coef; |
679 |
|
|
|
680 |
|
|
coef = (my_coef_ptr) |
681 |
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
682 |
|
|
SIZEOF(my_coef_controller)); |
683 |
|
|
cinfo->coef = (struct jpeg_d_coef_controller *) coef; |
684 |
|
|
coef->pub.start_input_pass = start_input_pass; |
685 |
|
|
coef->pub.start_output_pass = start_output_pass; |
686 |
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
687 |
|
|
coef->coef_bits_latch = NULL; |
688 |
|
|
#endif |
689 |
|
|
|
690 |
|
|
/* Create the coefficient buffer. */ |
691 |
|
|
if (need_full_buffer) { |
692 |
|
|
#ifdef D_MULTISCAN_FILES_SUPPORTED |
693 |
|
|
/* Allocate a full-image virtual array for each component, */ |
694 |
|
|
/* padded to a multiple of samp_factor DCT blocks in each direction. */ |
695 |
|
|
/* Note we ask for a pre-zeroed array. */ |
696 |
|
|
int ci, access_rows; |
697 |
|
|
jpeg_component_info *compptr; |
698 |
|
|
|
699 |
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
700 |
|
|
ci++, compptr++) { |
701 |
|
|
access_rows = compptr->v_samp_factor; |
702 |
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED |
703 |
|
|
/* If block smoothing could be used, need a bigger window */ |
704 |
|
|
if (cinfo->progressive_mode) |
705 |
|
|
access_rows *= 3; |
706 |
|
|
#endif |
707 |
|
|
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
708 |
|
|
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
709 |
|
|
(JDIMENSION) jround_up((long) compptr->width_in_blocks, |
710 |
|
|
(long) compptr->h_samp_factor), |
711 |
|
|
(JDIMENSION) jround_up((long) compptr->height_in_blocks, |
712 |
|
|
(long) compptr->v_samp_factor), |
713 |
|
|
(JDIMENSION) access_rows); |
714 |
|
|
} |
715 |
|
|
coef->pub.consume_data = consume_data; |
716 |
|
|
coef->pub.decompress_data = decompress_data; |
717 |
|
|
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
718 |
|
|
#else |
719 |
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
720 |
|
|
#endif |
721 |
|
|
} else { |
722 |
|
|
/* We only need a single-MCU buffer. */ |
723 |
|
|
JBLOCKROW buffer; |
724 |
|
|
int i; |
725 |
|
|
|
726 |
|
|
buffer = (JBLOCKROW) |
727 |
|
|
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
728 |
|
|
D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
729 |
|
|
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
730 |
|
|
coef->MCU_buffer[i] = buffer + i; |
731 |
|
|
} |
732 |
|
|
coef->pub.consume_data = dummy_consume_data; |
733 |
|
|
coef->pub.decompress_data = decompress_onepass; |
734 |
|
|
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
735 |
|
|
} |
736 |
|
|
} |