1 |
/* |
2 |
* jcsample.c |
3 |
* |
4 |
* Copyright (C) 1991-1996, Thomas G. Lane. |
5 |
* This file is part of the Independent JPEG Group's software. |
6 |
* For conditions of distribution and use, see the accompanying README file. |
7 |
* |
8 |
* This file contains downsampling routines. |
9 |
* |
10 |
* Downsampling input data is counted in "row groups". A row group |
11 |
* is defined to be max_v_samp_factor pixel rows of each component, |
12 |
* from which the downsampler produces v_samp_factor sample rows. |
13 |
* A single row group is processed in each call to the downsampler module. |
14 |
* |
15 |
* The downsampler is responsible for edge-expansion of its output data |
16 |
* to fill an integral number of DCT blocks horizontally. The source buffer |
17 |
* may be modified if it is helpful for this purpose (the source buffer is |
18 |
* allocated wide enough to correspond to the desired output width). |
19 |
* The caller (the prep controller) is responsible for vertical padding. |
20 |
* |
21 |
* The downsampler may request "context rows" by setting need_context_rows |
22 |
* during startup. In this case, the input arrays will contain at least |
23 |
* one row group's worth of pixels above and below the passed-in data; |
24 |
* the caller will create dummy rows at image top and bottom by replicating |
25 |
* the first or last real pixel row. |
26 |
* |
27 |
* An excellent reference for image resampling is |
28 |
* Digital Image Warping, George Wolberg, 1990. |
29 |
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
30 |
* |
31 |
* The downsampling algorithm used here is a simple average of the source |
32 |
* pixels covered by the output pixel. The hi-falutin sampling literature |
33 |
* refers to this as a "box filter". In general the characteristics of a box |
34 |
* filter are not very good, but for the specific cases we normally use (1:1 |
35 |
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
36 |
* nearly so bad. If you intend to use other sampling ratios, you'd be well |
37 |
* advised to improve this code. |
38 |
* |
39 |
* A simple input-smoothing capability is provided. This is mainly intended |
40 |
* for cleaning up color-dithered GIF input files (if you find it inadequate, |
41 |
* we suggest using an external filtering program such as pnmconvol). When |
42 |
* enabled, each input pixel P is replaced by a weighted sum of itself and its |
43 |
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
44 |
* where SF = (smoothing_factor / 1024). |
45 |
* Currently, smoothing is only supported for 2h2v sampling factors. |
46 |
*/ |
47 |
|
48 |
#define JPEG_INTERNALS |
49 |
#include "jinclude.h" |
50 |
#include "jpeglib.h" |
51 |
|
52 |
|
53 |
/* Pointer to routine to downsample a single component */ |
54 |
typedef JMETHOD(void, downsample1_ptr, |
55 |
(j_compress_ptr cinfo, jpeg_component_info * compptr, |
56 |
JSAMPARRAY input_data, JSAMPARRAY output_data)); |
57 |
|
58 |
/* Private subobject */ |
59 |
|
60 |
typedef struct { |
61 |
struct jpeg_downsampler pub; /* public fields */ |
62 |
|
63 |
/* Downsampling method pointers, one per component */ |
64 |
downsample1_ptr methods[MAX_COMPONENTS]; |
65 |
|
66 |
/* Height of an output row group for each component. */ |
67 |
int rowgroup_height[MAX_COMPONENTS]; |
68 |
|
69 |
/* These arrays save pixel expansion factors so that int_downsample need not |
70 |
* recompute them each time. They are unused for other downsampling methods. |
71 |
*/ |
72 |
UINT8 h_expand[MAX_COMPONENTS]; |
73 |
UINT8 v_expand[MAX_COMPONENTS]; |
74 |
} my_downsampler; |
75 |
|
76 |
typedef my_downsampler * my_downsample_ptr; |
77 |
|
78 |
|
79 |
/* |
80 |
* Initialize for a downsampling pass. |
81 |
*/ |
82 |
|
83 |
METHODDEF(void) |
84 |
start_pass_downsample (j_compress_ptr cinfo) |
85 |
{ |
86 |
/* no work for now */ |
87 |
} |
88 |
|
89 |
|
90 |
/* |
91 |
* Expand a component horizontally from width input_cols to width output_cols, |
92 |
* by duplicating the rightmost samples. |
93 |
*/ |
94 |
|
95 |
LOCAL(void) |
96 |
expand_right_edge (JSAMPARRAY image_data, int num_rows, |
97 |
JDIMENSION input_cols, JDIMENSION output_cols) |
98 |
{ |
99 |
register JSAMPROW ptr; |
100 |
register JSAMPLE pixval; |
101 |
register int count; |
102 |
int row; |
103 |
int numcols = (int) (output_cols - input_cols); |
104 |
|
105 |
if (numcols > 0) { |
106 |
for (row = 0; row < num_rows; row++) { |
107 |
ptr = image_data[row] + input_cols; |
108 |
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
109 |
for (count = numcols; count > 0; count--) |
110 |
*ptr++ = pixval; |
111 |
} |
112 |
} |
113 |
} |
114 |
|
115 |
|
116 |
/* |
117 |
* Do downsampling for a whole row group (all components). |
118 |
* |
119 |
* In this version we simply downsample each component independently. |
120 |
*/ |
121 |
|
122 |
METHODDEF(void) |
123 |
sep_downsample (j_compress_ptr cinfo, |
124 |
JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
125 |
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
126 |
{ |
127 |
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
128 |
int ci; |
129 |
jpeg_component_info * compptr; |
130 |
JSAMPARRAY in_ptr, out_ptr; |
131 |
|
132 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
133 |
ci++, compptr++) { |
134 |
in_ptr = input_buf[ci] + in_row_index; |
135 |
out_ptr = output_buf[ci] + |
136 |
(out_row_group_index * downsample->rowgroup_height[ci]); |
137 |
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
138 |
} |
139 |
} |
140 |
|
141 |
|
142 |
/* |
143 |
* Downsample pixel values of a single component. |
144 |
* One row group is processed per call. |
145 |
* This version handles arbitrary integral sampling ratios, without smoothing. |
146 |
* Note that this version is not actually used for customary sampling ratios. |
147 |
*/ |
148 |
|
149 |
METHODDEF(void) |
150 |
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
151 |
JSAMPARRAY input_data, JSAMPARRAY output_data) |
152 |
{ |
153 |
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
154 |
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
155 |
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
156 |
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
157 |
JSAMPROW inptr, outptr; |
158 |
INT32 outvalue; |
159 |
|
160 |
h_expand = downsample->h_expand[compptr->component_index]; |
161 |
v_expand = downsample->v_expand[compptr->component_index]; |
162 |
numpix = h_expand * v_expand; |
163 |
numpix2 = numpix/2; |
164 |
|
165 |
/* Expand input data enough to let all the output samples be generated |
166 |
* by the standard loop. Special-casing padded output would be more |
167 |
* efficient. |
168 |
*/ |
169 |
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
170 |
cinfo->image_width, output_cols * h_expand); |
171 |
|
172 |
inrow = outrow = 0; |
173 |
while (inrow < cinfo->max_v_samp_factor) { |
174 |
outptr = output_data[outrow]; |
175 |
for (outcol = 0, outcol_h = 0; outcol < output_cols; |
176 |
outcol++, outcol_h += h_expand) { |
177 |
outvalue = 0; |
178 |
for (v = 0; v < v_expand; v++) { |
179 |
inptr = input_data[inrow+v] + outcol_h; |
180 |
for (h = 0; h < h_expand; h++) { |
181 |
outvalue += (INT32) GETJSAMPLE(*inptr++); |
182 |
} |
183 |
} |
184 |
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
185 |
} |
186 |
inrow += v_expand; |
187 |
outrow++; |
188 |
} |
189 |
} |
190 |
|
191 |
|
192 |
/* |
193 |
* Downsample pixel values of a single component. |
194 |
* This version handles the special case of a full-size component, |
195 |
* without smoothing. |
196 |
*/ |
197 |
|
198 |
METHODDEF(void) |
199 |
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
200 |
JSAMPARRAY input_data, JSAMPARRAY output_data) |
201 |
{ |
202 |
/* Copy the data */ |
203 |
jcopy_sample_rows(input_data, 0, output_data, 0, |
204 |
cinfo->max_v_samp_factor, cinfo->image_width); |
205 |
/* Edge-expand */ |
206 |
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, |
207 |
compptr->width_in_blocks * compptr->DCT_h_scaled_size); |
208 |
} |
209 |
|
210 |
|
211 |
/* |
212 |
* Downsample pixel values of a single component. |
213 |
* This version handles the common case of 2:1 horizontal and 1:1 vertical, |
214 |
* without smoothing. |
215 |
* |
216 |
* A note about the "bias" calculations: when rounding fractional values to |
217 |
* integer, we do not want to always round 0.5 up to the next integer. |
218 |
* If we did that, we'd introduce a noticeable bias towards larger values. |
219 |
* Instead, this code is arranged so that 0.5 will be rounded up or down at |
220 |
* alternate pixel locations (a simple ordered dither pattern). |
221 |
*/ |
222 |
|
223 |
METHODDEF(void) |
224 |
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
225 |
JSAMPARRAY input_data, JSAMPARRAY output_data) |
226 |
{ |
227 |
int inrow; |
228 |
JDIMENSION outcol; |
229 |
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
230 |
register JSAMPROW inptr, outptr; |
231 |
register int bias; |
232 |
|
233 |
/* Expand input data enough to let all the output samples be generated |
234 |
* by the standard loop. Special-casing padded output would be more |
235 |
* efficient. |
236 |
*/ |
237 |
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
238 |
cinfo->image_width, output_cols * 2); |
239 |
|
240 |
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
241 |
outptr = output_data[inrow]; |
242 |
inptr = input_data[inrow]; |
243 |
bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
244 |
for (outcol = 0; outcol < output_cols; outcol++) { |
245 |
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
246 |
+ bias) >> 1); |
247 |
bias ^= 1; /* 0=>1, 1=>0 */ |
248 |
inptr += 2; |
249 |
} |
250 |
} |
251 |
} |
252 |
|
253 |
|
254 |
/* |
255 |
* Downsample pixel values of a single component. |
256 |
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
257 |
* without smoothing. |
258 |
*/ |
259 |
|
260 |
METHODDEF(void) |
261 |
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
262 |
JSAMPARRAY input_data, JSAMPARRAY output_data) |
263 |
{ |
264 |
int inrow, outrow; |
265 |
JDIMENSION outcol; |
266 |
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
267 |
register JSAMPROW inptr0, inptr1, outptr; |
268 |
register int bias; |
269 |
|
270 |
/* Expand input data enough to let all the output samples be generated |
271 |
* by the standard loop. Special-casing padded output would be more |
272 |
* efficient. |
273 |
*/ |
274 |
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
275 |
cinfo->image_width, output_cols * 2); |
276 |
|
277 |
inrow = outrow = 0; |
278 |
while (inrow < cinfo->max_v_samp_factor) { |
279 |
outptr = output_data[outrow]; |
280 |
inptr0 = input_data[inrow]; |
281 |
inptr1 = input_data[inrow+1]; |
282 |
bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
283 |
for (outcol = 0; outcol < output_cols; outcol++) { |
284 |
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
285 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
286 |
+ bias) >> 2); |
287 |
bias ^= 3; /* 1=>2, 2=>1 */ |
288 |
inptr0 += 2; inptr1 += 2; |
289 |
} |
290 |
inrow += 2; |
291 |
outrow++; |
292 |
} |
293 |
} |
294 |
|
295 |
|
296 |
#ifdef INPUT_SMOOTHING_SUPPORTED |
297 |
|
298 |
/* |
299 |
* Downsample pixel values of a single component. |
300 |
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
301 |
* with smoothing. One row of context is required. |
302 |
*/ |
303 |
|
304 |
METHODDEF(void) |
305 |
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
306 |
JSAMPARRAY input_data, JSAMPARRAY output_data) |
307 |
{ |
308 |
int inrow, outrow; |
309 |
JDIMENSION colctr; |
310 |
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
311 |
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
312 |
INT32 membersum, neighsum, memberscale, neighscale; |
313 |
|
314 |
/* Expand input data enough to let all the output samples be generated |
315 |
* by the standard loop. Special-casing padded output would be more |
316 |
* efficient. |
317 |
*/ |
318 |
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
319 |
cinfo->image_width, output_cols * 2); |
320 |
|
321 |
/* We don't bother to form the individual "smoothed" input pixel values; |
322 |
* we can directly compute the output which is the average of the four |
323 |
* smoothed values. Each of the four member pixels contributes a fraction |
324 |
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
325 |
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
326 |
* output. The four corner-adjacent neighbor pixels contribute a fraction |
327 |
* SF to just one smoothed pixel, or SF/4 to the final output; while the |
328 |
* eight edge-adjacent neighbors contribute SF to each of two smoothed |
329 |
* pixels, or SF/2 overall. In order to use integer arithmetic, these |
330 |
* factors are scaled by 2^16 = 65536. |
331 |
* Also recall that SF = smoothing_factor / 1024. |
332 |
*/ |
333 |
|
334 |
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
335 |
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
336 |
|
337 |
inrow = outrow = 0; |
338 |
while (inrow < cinfo->max_v_samp_factor) { |
339 |
outptr = output_data[outrow]; |
340 |
inptr0 = input_data[inrow]; |
341 |
inptr1 = input_data[inrow+1]; |
342 |
above_ptr = input_data[inrow-1]; |
343 |
below_ptr = input_data[inrow+2]; |
344 |
|
345 |
/* Special case for first column: pretend column -1 is same as column 0 */ |
346 |
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
347 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
348 |
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
349 |
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
350 |
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
351 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
352 |
neighsum += neighsum; |
353 |
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
354 |
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
355 |
membersum = membersum * memberscale + neighsum * neighscale; |
356 |
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
357 |
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
358 |
|
359 |
for (colctr = output_cols - 2; colctr > 0; colctr--) { |
360 |
/* sum of pixels directly mapped to this output element */ |
361 |
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
362 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
363 |
/* sum of edge-neighbor pixels */ |
364 |
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
365 |
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
366 |
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
367 |
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
368 |
/* The edge-neighbors count twice as much as corner-neighbors */ |
369 |
neighsum += neighsum; |
370 |
/* Add in the corner-neighbors */ |
371 |
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
372 |
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
373 |
/* form final output scaled up by 2^16 */ |
374 |
membersum = membersum * memberscale + neighsum * neighscale; |
375 |
/* round, descale and output it */ |
376 |
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
377 |
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
378 |
} |
379 |
|
380 |
/* Special case for last column */ |
381 |
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
382 |
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
383 |
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
384 |
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
385 |
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
386 |
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
387 |
neighsum += neighsum; |
388 |
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
389 |
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
390 |
membersum = membersum * memberscale + neighsum * neighscale; |
391 |
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
392 |
|
393 |
inrow += 2; |
394 |
outrow++; |
395 |
} |
396 |
} |
397 |
|
398 |
|
399 |
/* |
400 |
* Downsample pixel values of a single component. |
401 |
* This version handles the special case of a full-size component, |
402 |
* with smoothing. One row of context is required. |
403 |
*/ |
404 |
|
405 |
METHODDEF(void) |
406 |
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
407 |
JSAMPARRAY input_data, JSAMPARRAY output_data) |
408 |
{ |
409 |
int inrow; |
410 |
JDIMENSION colctr; |
411 |
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
412 |
register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
413 |
INT32 membersum, neighsum, memberscale, neighscale; |
414 |
int colsum, lastcolsum, nextcolsum; |
415 |
|
416 |
/* Expand input data enough to let all the output samples be generated |
417 |
* by the standard loop. Special-casing padded output would be more |
418 |
* efficient. |
419 |
*/ |
420 |
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
421 |
cinfo->image_width, output_cols); |
422 |
|
423 |
/* Each of the eight neighbor pixels contributes a fraction SF to the |
424 |
* smoothed pixel, while the main pixel contributes (1-8*SF). In order |
425 |
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
426 |
* Also recall that SF = smoothing_factor / 1024. |
427 |
*/ |
428 |
|
429 |
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
430 |
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
431 |
|
432 |
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
433 |
outptr = output_data[inrow]; |
434 |
inptr = input_data[inrow]; |
435 |
above_ptr = input_data[inrow-1]; |
436 |
below_ptr = input_data[inrow+1]; |
437 |
|
438 |
/* Special case for first column */ |
439 |
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
440 |
GETJSAMPLE(*inptr); |
441 |
membersum = GETJSAMPLE(*inptr++); |
442 |
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
443 |
GETJSAMPLE(*inptr); |
444 |
neighsum = colsum + (colsum - membersum) + nextcolsum; |
445 |
membersum = membersum * memberscale + neighsum * neighscale; |
446 |
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
447 |
lastcolsum = colsum; colsum = nextcolsum; |
448 |
|
449 |
for (colctr = output_cols - 2; colctr > 0; colctr--) { |
450 |
membersum = GETJSAMPLE(*inptr++); |
451 |
above_ptr++; below_ptr++; |
452 |
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
453 |
GETJSAMPLE(*inptr); |
454 |
neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
455 |
membersum = membersum * memberscale + neighsum * neighscale; |
456 |
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
457 |
lastcolsum = colsum; colsum = nextcolsum; |
458 |
} |
459 |
|
460 |
/* Special case for last column */ |
461 |
membersum = GETJSAMPLE(*inptr); |
462 |
neighsum = lastcolsum + (colsum - membersum) + colsum; |
463 |
membersum = membersum * memberscale + neighsum * neighscale; |
464 |
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
465 |
|
466 |
} |
467 |
} |
468 |
|
469 |
#endif /* INPUT_SMOOTHING_SUPPORTED */ |
470 |
|
471 |
|
472 |
/* |
473 |
* Module initialization routine for downsampling. |
474 |
* Note that we must select a routine for each component. |
475 |
*/ |
476 |
|
477 |
GLOBAL(void) |
478 |
jinit_downsampler (j_compress_ptr cinfo) |
479 |
{ |
480 |
my_downsample_ptr downsample; |
481 |
int ci; |
482 |
jpeg_component_info * compptr; |
483 |
boolean smoothok = TRUE; |
484 |
int h_in_group, v_in_group, h_out_group, v_out_group; |
485 |
|
486 |
downsample = (my_downsample_ptr) |
487 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
488 |
SIZEOF(my_downsampler)); |
489 |
cinfo->downsample = (struct jpeg_downsampler *) downsample; |
490 |
downsample->pub.start_pass = start_pass_downsample; |
491 |
downsample->pub.downsample = sep_downsample; |
492 |
downsample->pub.need_context_rows = FALSE; |
493 |
|
494 |
if (cinfo->CCIR601_sampling) |
495 |
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
496 |
|
497 |
/* Verify we can handle the sampling factors, and set up method pointers */ |
498 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
499 |
ci++, compptr++) { |
500 |
/* Compute size of an "output group" for DCT scaling. This many samples |
501 |
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels. |
502 |
*/ |
503 |
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / |
504 |
cinfo->min_DCT_h_scaled_size; |
505 |
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
506 |
cinfo->min_DCT_v_scaled_size; |
507 |
h_in_group = cinfo->max_h_samp_factor; |
508 |
v_in_group = cinfo->max_v_samp_factor; |
509 |
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ |
510 |
if (h_in_group == h_out_group && v_in_group == v_out_group) { |
511 |
#ifdef INPUT_SMOOTHING_SUPPORTED |
512 |
if (cinfo->smoothing_factor) { |
513 |
downsample->methods[ci] = fullsize_smooth_downsample; |
514 |
downsample->pub.need_context_rows = TRUE; |
515 |
} else |
516 |
#endif |
517 |
downsample->methods[ci] = fullsize_downsample; |
518 |
} else if (h_in_group == h_out_group * 2 && |
519 |
v_in_group == v_out_group) { |
520 |
smoothok = FALSE; |
521 |
downsample->methods[ci] = h2v1_downsample; |
522 |
} else if (h_in_group == h_out_group * 2 && |
523 |
v_in_group == v_out_group * 2) { |
524 |
#ifdef INPUT_SMOOTHING_SUPPORTED |
525 |
if (cinfo->smoothing_factor) { |
526 |
downsample->methods[ci] = h2v2_smooth_downsample; |
527 |
downsample->pub.need_context_rows = TRUE; |
528 |
} else |
529 |
#endif |
530 |
downsample->methods[ci] = h2v2_downsample; |
531 |
} else if ((h_in_group % h_out_group) == 0 && |
532 |
(v_in_group % v_out_group) == 0) { |
533 |
smoothok = FALSE; |
534 |
downsample->methods[ci] = int_downsample; |
535 |
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); |
536 |
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); |
537 |
} else |
538 |
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
539 |
} |
540 |
|
541 |
#ifdef INPUT_SMOOTHING_SUPPORTED |
542 |
if (cinfo->smoothing_factor && !smoothok) |
543 |
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
544 |
#endif |
545 |
} |