1 |
/* |
2 |
* jccoefct.c |
3 |
* |
4 |
* Copyright (C) 1994-1997, Thomas G. Lane. |
5 |
* This file is part of the Independent JPEG Group's software. |
6 |
* For conditions of distribution and use, see the accompanying README file. |
7 |
* |
8 |
* This file contains the coefficient buffer controller for compression. |
9 |
* This controller is the top level of the JPEG compressor proper. |
10 |
* The coefficient buffer lies between forward-DCT and entropy encoding steps. |
11 |
*/ |
12 |
|
13 |
#define JPEG_INTERNALS |
14 |
#include "jinclude.h" |
15 |
#include "jpeglib.h" |
16 |
|
17 |
|
18 |
/* We use a full-image coefficient buffer when doing Huffman optimization, |
19 |
* and also for writing multiple-scan JPEG files. In all cases, the DCT |
20 |
* step is run during the first pass, and subsequent passes need only read |
21 |
* the buffered coefficients. |
22 |
*/ |
23 |
#ifdef ENTROPY_OPT_SUPPORTED |
24 |
#define FULL_COEF_BUFFER_SUPPORTED |
25 |
#else |
26 |
#ifdef C_MULTISCAN_FILES_SUPPORTED |
27 |
#define FULL_COEF_BUFFER_SUPPORTED |
28 |
#endif |
29 |
#endif |
30 |
|
31 |
|
32 |
/* Private buffer controller object */ |
33 |
|
34 |
typedef struct { |
35 |
struct jpeg_c_coef_controller pub; /* public fields */ |
36 |
|
37 |
JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
38 |
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
39 |
int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
40 |
int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
41 |
|
42 |
/* For single-pass compression, it's sufficient to buffer just one MCU |
43 |
* (although this may prove a bit slow in practice). We allocate a |
44 |
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each |
45 |
* MCU constructed and sent. (On 80x86, the workspace is FAR even though |
46 |
* it's not really very big; this is to keep the module interfaces unchanged |
47 |
* when a large coefficient buffer is necessary.) |
48 |
* In multi-pass modes, this array points to the current MCU's blocks |
49 |
* within the virtual arrays. |
50 |
*/ |
51 |
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
52 |
|
53 |
/* In multi-pass modes, we need a virtual block array for each component. */ |
54 |
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
55 |
} my_coef_controller; |
56 |
|
57 |
typedef my_coef_controller * my_coef_ptr; |
58 |
|
59 |
|
60 |
/* Forward declarations */ |
61 |
METHODDEF(boolean) compress_data |
62 |
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
63 |
#ifdef FULL_COEF_BUFFER_SUPPORTED |
64 |
METHODDEF(boolean) compress_first_pass |
65 |
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
66 |
METHODDEF(boolean) compress_output |
67 |
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
68 |
#endif |
69 |
|
70 |
|
71 |
LOCAL(void) |
72 |
start_iMCU_row (j_compress_ptr cinfo) |
73 |
/* Reset within-iMCU-row counters for a new row */ |
74 |
{ |
75 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
76 |
|
77 |
/* In an interleaved scan, an MCU row is the same as an iMCU row. |
78 |
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
79 |
* But at the bottom of the image, process only what's left. |
80 |
*/ |
81 |
if (cinfo->comps_in_scan > 1) { |
82 |
coef->MCU_rows_per_iMCU_row = 1; |
83 |
} else { |
84 |
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
85 |
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
86 |
else |
87 |
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
88 |
} |
89 |
|
90 |
coef->mcu_ctr = 0; |
91 |
coef->MCU_vert_offset = 0; |
92 |
} |
93 |
|
94 |
|
95 |
/* |
96 |
* Initialize for a processing pass. |
97 |
*/ |
98 |
|
99 |
METHODDEF(void) |
100 |
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
101 |
{ |
102 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
103 |
|
104 |
coef->iMCU_row_num = 0; |
105 |
start_iMCU_row(cinfo); |
106 |
|
107 |
switch (pass_mode) { |
108 |
case JBUF_PASS_THRU: |
109 |
if (coef->whole_image[0] != NULL) |
110 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
111 |
coef->pub.compress_data = compress_data; |
112 |
break; |
113 |
#ifdef FULL_COEF_BUFFER_SUPPORTED |
114 |
case JBUF_SAVE_AND_PASS: |
115 |
if (coef->whole_image[0] == NULL) |
116 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
117 |
coef->pub.compress_data = compress_first_pass; |
118 |
break; |
119 |
case JBUF_CRANK_DEST: |
120 |
if (coef->whole_image[0] == NULL) |
121 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
122 |
coef->pub.compress_data = compress_output; |
123 |
break; |
124 |
#endif |
125 |
default: |
126 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
127 |
break; |
128 |
} |
129 |
} |
130 |
|
131 |
|
132 |
/* |
133 |
* Process some data in the single-pass case. |
134 |
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
135 |
* per call, ie, v_samp_factor block rows for each component in the image. |
136 |
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
137 |
* |
138 |
* NB: input_buf contains a plane for each component in image, |
139 |
* which we index according to the component's SOF position. |
140 |
*/ |
141 |
|
142 |
METHODDEF(boolean) |
143 |
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
144 |
{ |
145 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
146 |
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
147 |
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
148 |
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
149 |
int blkn, bi, ci, yindex, yoffset, blockcnt; |
150 |
JDIMENSION ypos, xpos; |
151 |
jpeg_component_info *compptr; |
152 |
forward_DCT_ptr forward_DCT; |
153 |
|
154 |
/* Loop to write as much as one whole iMCU row */ |
155 |
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
156 |
yoffset++) { |
157 |
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; |
158 |
MCU_col_num++) { |
159 |
/* Determine where data comes from in input_buf and do the DCT thing. |
160 |
* Each call on forward_DCT processes a horizontal row of DCT blocks |
161 |
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks |
162 |
* sequentially. Dummy blocks at the right or bottom edge are filled in |
163 |
* specially. The data in them does not matter for image reconstruction, |
164 |
* so we fill them with values that will encode to the smallest amount of |
165 |
* data, viz: all zeroes in the AC entries, DC entries equal to previous |
166 |
* block's DC value. (Thanks to Thomas Kinsman for this idea.) |
167 |
*/ |
168 |
blkn = 0; |
169 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
170 |
compptr = cinfo->cur_comp_info[ci]; |
171 |
forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; |
172 |
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
173 |
: compptr->last_col_width; |
174 |
xpos = MCU_col_num * compptr->MCU_sample_width; |
175 |
ypos = yoffset * compptr->DCT_v_scaled_size; |
176 |
/* ypos == (yoffset+yindex) * DCTSIZE */ |
177 |
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
178 |
if (coef->iMCU_row_num < last_iMCU_row || |
179 |
yoffset+yindex < compptr->last_row_height) { |
180 |
(*forward_DCT) (cinfo, compptr, |
181 |
input_buf[compptr->component_index], |
182 |
coef->MCU_buffer[blkn], |
183 |
ypos, xpos, (JDIMENSION) blockcnt); |
184 |
if (blockcnt < compptr->MCU_width) { |
185 |
/* Create some dummy blocks at the right edge of the image. */ |
186 |
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], |
187 |
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); |
188 |
for (bi = blockcnt; bi < compptr->MCU_width; bi++) { |
189 |
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; |
190 |
} |
191 |
} |
192 |
} else { |
193 |
/* Create a row of dummy blocks at the bottom of the image. */ |
194 |
jzero_far((void FAR *) coef->MCU_buffer[blkn], |
195 |
compptr->MCU_width * SIZEOF(JBLOCK)); |
196 |
for (bi = 0; bi < compptr->MCU_width; bi++) { |
197 |
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; |
198 |
} |
199 |
} |
200 |
blkn += compptr->MCU_width; |
201 |
ypos += compptr->DCT_v_scaled_size; |
202 |
} |
203 |
} |
204 |
/* Try to write the MCU. In event of a suspension failure, we will |
205 |
* re-DCT the MCU on restart (a bit inefficient, could be fixed...) |
206 |
*/ |
207 |
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
208 |
/* Suspension forced; update state counters and exit */ |
209 |
coef->MCU_vert_offset = yoffset; |
210 |
coef->mcu_ctr = MCU_col_num; |
211 |
return FALSE; |
212 |
} |
213 |
} |
214 |
/* Completed an MCU row, but perhaps not an iMCU row */ |
215 |
coef->mcu_ctr = 0; |
216 |
} |
217 |
/* Completed the iMCU row, advance counters for next one */ |
218 |
coef->iMCU_row_num++; |
219 |
start_iMCU_row(cinfo); |
220 |
return TRUE; |
221 |
} |
222 |
|
223 |
|
224 |
#ifdef FULL_COEF_BUFFER_SUPPORTED |
225 |
|
226 |
/* |
227 |
* Process some data in the first pass of a multi-pass case. |
228 |
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
229 |
* per call, ie, v_samp_factor block rows for each component in the image. |
230 |
* This amount of data is read from the source buffer, DCT'd and quantized, |
231 |
* and saved into the virtual arrays. We also generate suitable dummy blocks |
232 |
* as needed at the right and lower edges. (The dummy blocks are constructed |
233 |
* in the virtual arrays, which have been padded appropriately.) This makes |
234 |
* it possible for subsequent passes not to worry about real vs. dummy blocks. |
235 |
* |
236 |
* We must also emit the data to the entropy encoder. This is conveniently |
237 |
* done by calling compress_output() after we've loaded the current strip |
238 |
* of the virtual arrays. |
239 |
* |
240 |
* NB: input_buf contains a plane for each component in image. All |
241 |
* components are DCT'd and loaded into the virtual arrays in this pass. |
242 |
* However, it may be that only a subset of the components are emitted to |
243 |
* the entropy encoder during this first pass; be careful about looking |
244 |
* at the scan-dependent variables (MCU dimensions, etc). |
245 |
*/ |
246 |
|
247 |
METHODDEF(boolean) |
248 |
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
249 |
{ |
250 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
251 |
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
252 |
JDIMENSION blocks_across, MCUs_across, MCUindex; |
253 |
int bi, ci, h_samp_factor, block_row, block_rows, ndummy; |
254 |
JCOEF lastDC; |
255 |
jpeg_component_info *compptr; |
256 |
JBLOCKARRAY buffer; |
257 |
JBLOCKROW thisblockrow, lastblockrow; |
258 |
forward_DCT_ptr forward_DCT; |
259 |
|
260 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
261 |
ci++, compptr++) { |
262 |
/* Align the virtual buffer for this component. */ |
263 |
buffer = (*cinfo->mem->access_virt_barray) |
264 |
((j_common_ptr) cinfo, coef->whole_image[ci], |
265 |
coef->iMCU_row_num * compptr->v_samp_factor, |
266 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
267 |
/* Count non-dummy DCT block rows in this iMCU row. */ |
268 |
if (coef->iMCU_row_num < last_iMCU_row) |
269 |
block_rows = compptr->v_samp_factor; |
270 |
else { |
271 |
/* NB: can't use last_row_height here, since may not be set! */ |
272 |
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
273 |
if (block_rows == 0) block_rows = compptr->v_samp_factor; |
274 |
} |
275 |
blocks_across = compptr->width_in_blocks; |
276 |
h_samp_factor = compptr->h_samp_factor; |
277 |
/* Count number of dummy blocks to be added at the right margin. */ |
278 |
ndummy = (int) (blocks_across % h_samp_factor); |
279 |
if (ndummy > 0) |
280 |
ndummy = h_samp_factor - ndummy; |
281 |
forward_DCT = cinfo->fdct->forward_DCT[ci]; |
282 |
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call |
283 |
* on forward_DCT processes a complete horizontal row of DCT blocks. |
284 |
*/ |
285 |
for (block_row = 0; block_row < block_rows; block_row++) { |
286 |
thisblockrow = buffer[block_row]; |
287 |
(*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow, |
288 |
(JDIMENSION) (block_row * compptr->DCT_v_scaled_size), |
289 |
(JDIMENSION) 0, blocks_across); |
290 |
if (ndummy > 0) { |
291 |
/* Create dummy blocks at the right edge of the image. */ |
292 |
thisblockrow += blocks_across; /* => first dummy block */ |
293 |
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); |
294 |
lastDC = thisblockrow[-1][0]; |
295 |
for (bi = 0; bi < ndummy; bi++) { |
296 |
thisblockrow[bi][0] = lastDC; |
297 |
} |
298 |
} |
299 |
} |
300 |
/* If at end of image, create dummy block rows as needed. |
301 |
* The tricky part here is that within each MCU, we want the DC values |
302 |
* of the dummy blocks to match the last real block's DC value. |
303 |
* This squeezes a few more bytes out of the resulting file... |
304 |
*/ |
305 |
if (coef->iMCU_row_num == last_iMCU_row) { |
306 |
blocks_across += ndummy; /* include lower right corner */ |
307 |
MCUs_across = blocks_across / h_samp_factor; |
308 |
for (block_row = block_rows; block_row < compptr->v_samp_factor; |
309 |
block_row++) { |
310 |
thisblockrow = buffer[block_row]; |
311 |
lastblockrow = buffer[block_row-1]; |
312 |
jzero_far((void FAR *) thisblockrow, |
313 |
(size_t) (blocks_across * SIZEOF(JBLOCK))); |
314 |
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { |
315 |
lastDC = lastblockrow[h_samp_factor-1][0]; |
316 |
for (bi = 0; bi < h_samp_factor; bi++) { |
317 |
thisblockrow[bi][0] = lastDC; |
318 |
} |
319 |
thisblockrow += h_samp_factor; /* advance to next MCU in row */ |
320 |
lastblockrow += h_samp_factor; |
321 |
} |
322 |
} |
323 |
} |
324 |
} |
325 |
/* NB: compress_output will increment iMCU_row_num if successful. |
326 |
* A suspension return will result in redoing all the work above next time. |
327 |
*/ |
328 |
|
329 |
/* Emit data to the entropy encoder, sharing code with subsequent passes */ |
330 |
return compress_output(cinfo, input_buf); |
331 |
} |
332 |
|
333 |
|
334 |
/* |
335 |
* Process some data in subsequent passes of a multi-pass case. |
336 |
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
337 |
* per call, ie, v_samp_factor block rows for each component in the scan. |
338 |
* The data is obtained from the virtual arrays and fed to the entropy coder. |
339 |
* Returns TRUE if the iMCU row is completed, FALSE if suspended. |
340 |
* |
341 |
* NB: input_buf is ignored; it is likely to be a NULL pointer. |
342 |
*/ |
343 |
|
344 |
METHODDEF(boolean) |
345 |
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
346 |
{ |
347 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
348 |
JDIMENSION MCU_col_num; /* index of current MCU within row */ |
349 |
int blkn, ci, xindex, yindex, yoffset; |
350 |
JDIMENSION start_col; |
351 |
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
352 |
JBLOCKROW buffer_ptr; |
353 |
jpeg_component_info *compptr; |
354 |
|
355 |
/* Align the virtual buffers for the components used in this scan. |
356 |
* NB: during first pass, this is safe only because the buffers will |
357 |
* already be aligned properly, so jmemmgr.c won't need to do any I/O. |
358 |
*/ |
359 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
360 |
compptr = cinfo->cur_comp_info[ci]; |
361 |
buffer[ci] = (*cinfo->mem->access_virt_barray) |
362 |
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
363 |
coef->iMCU_row_num * compptr->v_samp_factor, |
364 |
(JDIMENSION) compptr->v_samp_factor, FALSE); |
365 |
} |
366 |
|
367 |
/* Loop to process one whole iMCU row */ |
368 |
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
369 |
yoffset++) { |
370 |
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; |
371 |
MCU_col_num++) { |
372 |
/* Construct list of pointers to DCT blocks belonging to this MCU */ |
373 |
blkn = 0; /* index of current DCT block within MCU */ |
374 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
375 |
compptr = cinfo->cur_comp_info[ci]; |
376 |
start_col = MCU_col_num * compptr->MCU_width; |
377 |
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
378 |
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
379 |
for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
380 |
coef->MCU_buffer[blkn++] = buffer_ptr++; |
381 |
} |
382 |
} |
383 |
} |
384 |
/* Try to write the MCU. */ |
385 |
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
386 |
/* Suspension forced; update state counters and exit */ |
387 |
coef->MCU_vert_offset = yoffset; |
388 |
coef->mcu_ctr = MCU_col_num; |
389 |
return FALSE; |
390 |
} |
391 |
} |
392 |
/* Completed an MCU row, but perhaps not an iMCU row */ |
393 |
coef->mcu_ctr = 0; |
394 |
} |
395 |
/* Completed the iMCU row, advance counters for next one */ |
396 |
coef->iMCU_row_num++; |
397 |
start_iMCU_row(cinfo); |
398 |
return TRUE; |
399 |
} |
400 |
|
401 |
#endif /* FULL_COEF_BUFFER_SUPPORTED */ |
402 |
|
403 |
|
404 |
/* |
405 |
* Initialize coefficient buffer controller. |
406 |
*/ |
407 |
|
408 |
GLOBAL(void) |
409 |
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
410 |
{ |
411 |
my_coef_ptr coef; |
412 |
|
413 |
coef = (my_coef_ptr) |
414 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
415 |
SIZEOF(my_coef_controller)); |
416 |
cinfo->coef = (struct jpeg_c_coef_controller *) coef; |
417 |
coef->pub.start_pass = start_pass_coef; |
418 |
|
419 |
/* Create the coefficient buffer. */ |
420 |
if (need_full_buffer) { |
421 |
#ifdef FULL_COEF_BUFFER_SUPPORTED |
422 |
/* Allocate a full-image virtual array for each component, */ |
423 |
/* padded to a multiple of samp_factor DCT blocks in each direction. */ |
424 |
int ci; |
425 |
jpeg_component_info *compptr; |
426 |
|
427 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
428 |
ci++, compptr++) { |
429 |
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
430 |
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
431 |
(JDIMENSION) jround_up((long) compptr->width_in_blocks, |
432 |
(long) compptr->h_samp_factor), |
433 |
(JDIMENSION) jround_up((long) compptr->height_in_blocks, |
434 |
(long) compptr->v_samp_factor), |
435 |
(JDIMENSION) compptr->v_samp_factor); |
436 |
} |
437 |
#else |
438 |
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
439 |
#endif |
440 |
} else { |
441 |
/* We only need a single-MCU buffer. */ |
442 |
JBLOCKROW buffer; |
443 |
int i; |
444 |
|
445 |
buffer = (JBLOCKROW) |
446 |
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
447 |
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
448 |
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { |
449 |
coef->MCU_buffer[i] = buffer + i; |
450 |
} |
451 |
coef->whole_image[0] = NULL; /* flag for no virtual arrays */ |
452 |
} |
453 |
} |